

DS5C2 series servo driver User manual

Basic explanation

- Thank you for purchasing XJNIE DS5C2 series servo driver products.
- This manual mainly introduces the product information of DS5C2 series servo driver and MS6 series servo motor.
- Before using the product, please read this manual carefully and connect the wires on the premise
 of fully understanding the contents of the manual.
- Please deliver this manual to the end user.

This manual is suitable for the following users

- Designer of servo system
- Installation and wiring workers
- Commissioning and servo debugging workers
- Maintenance and inspection workers

Get the manual

• Please consult the supplier, agent and office who purchased the product.

Declaration of liability

- Although the contents of the manual have been carefully checked, errors are inevitable, and we cannot guarantee complete consistency.
- We will often check the contents of the manual and make corrections in the subsequent versions. We welcome your valuable comments.
- If there is any change to the contents introduced in the manual, please understand without further notice.

Contact information

Tel: 400-885-0136Fax: 0510-85111290

Address: No.816, Jianzhu West Road, Binhu District, Wuxi City, Jiangsu Province, China

• Postcode: 214072

WUXI XINJE ELECTRIC CO., LTD. Copyright

Without explicit written permission, this material and its contents shall not be copied, transmitted or used, and the violator shall be liable for the losses caused. All rights provided in the patent license and registration including utility module or design are reserved.

Oct 10,2021

Safety Precautions

Before using this product, please read this part carefully and operate after fully understanding the use, safety and precautions of the product. Please connect the product correctly on the premise of paying great attention to safety.

The problems that may arise during the use of the product are basically listed in the safety precautions, and all are indicated by the two levels of attention and danger. For other unmentioned matters, please follow the basic electrical operation rules.

Caution

When used incorrectly, there may be danger, moderate injury or minor injury, and property loss.

Danger

When used incorrectly, it may cause danger, personal casualties or serious injuries as well as serious property losses.

Attention to product confirmation

1. Do not install damaged drives, drives that lack spare parts, or drives whose models do not meet the requirements.

Transportation and storage

- 1. Do not place or store in a place where the ambient temperature exceeds the storage temperature, the relative humidity exceeds the storage humidity, the temperature difference is large, and the condensation occurs.
- 2. Do not contact corrosive and combustible gases or places with much dust.
- 3. Do not place in a place with large vibration or impact that is directly transmitted to the servo driver.
- 4. It is strictly forbidden to hold the motor cable when handling.

Installation notes

- 1. It is strictly forbidden to place near flammable gas, otherwise it will cause fire.
- 2. Be sure to follow the installation direction requirements to prevent drive failure.
- 3. It is forbidden to expose the product to water, corrosive gases, flammable gases and other substances, causing electric shock and fire hazards.
- 4. Before installing wiring, be sure to disconnect the power supply to prevent electric shock.
- 5. Do not touch the conductive part of the product directly, which may cause misoperation and malfunction.

Cautions for wiring

- 1. Please connect AC power to L/N, L1/L2/L3 or R/S/T on the dedicated power terminal of the driver. Do not connect the output terminals U, V, W of the driver to the three-phase power supply.
- 2. Please connect the ground wire correctly. Poor grounding may cause electric shock. Please use 2 mm² wire to ground the ground terminal of the driver.
- 3. Please lock the fixed screw of the terminal, otherwise it may cause fire.
- 4. Be sure to disconnect all external power supply before wiring the driver.
- 5. Wiring, please ensure that the encode cable, power cable is loose, do not tighten, lest cable damage.

Operation Cautions

- 1. Do not touch the rotating part of the motor after the driver is running. There is a danger of injury.
- 2. During the test run, please carry out the test run of the motor under the idle shaft state in order to prevent the accidents, otherwise it may cause injury.
- 3. Please set appropriate parameters before operation, otherwise it may cause the machine out of control or failure.
- 4. Please do not touch the radiator during operation. There is a risk of scalding.
- 5. Do not change the wiring when the power is on. There is a risk of injury.
- 6. Do not switch power frequently. If you need to switch power many times, please control it once in 2 minutes, otherwise the charging resistance of the driver may be damaged. Due to frequent switching, the relay is energized before it is released, which may cause tripping.

Maintenance and inspection

- 1. Turn on and off the power supply by professionals.
- 2. It is strictly forbidden to use gasoline, acid, diluent and alkaline detergent to avoid shell damage or discoloration.
- 3. If the driver is replaced, please transfer the parameters of the original driver to the new driver before restarting the operation, otherwise mechanical damage or even personal injury will be caused.
- 4. It is strictly prohibited to change the wiring when the power is on, otherwise it will cause electric shock or injury.
- 5. It is strictly forbidden to remove the servo motor during operation, otherwise electric shock or injury may be caused.
- 6. It is strictly forbidden to touch the inside of servo driver and servo motor during operation, otherwise electric shock or injury may be caused.
- 7. Do not touch the terminal within 10 minutes after the power is turned off, otherwise the residual voltage may cause electric shock or injury.

Wiring attention

- 1. Do not cross the power line and the control signal line from the same pipeline, nor tie them together. The power line and the control signal line are separated by more than 30 centimeters.
- 2. For signal wire and encoder (PG) feedback wire, please use multi stranded wire and multi-core stranded overall shielded wire.
- 3. The longest signal input line is 3m, and the longest PG feedback line is 30m.
- 4. Please conduct wiring correctly and reliably, otherwise the motor will be out of control or failure, and serious injury will be caused.
- 5. It is strictly forbidden to use it when the power supply is in poor condition or exceeds the specified voltage variation range, otherwise it will cause mechanical damage.
- 6. Please take appropriate shielding measures when there is static electricity, strong electromagnetic field, radiation, and nearby power lines.

Catalog

CONFIRMATION ON PRODUCT ARRIVAL	
1 SELECTION OF SERVO SYSTEM	7
1.1 SELECTION OF SERVO DRIVER	7
1.1.1 Model name	
1.1.2 Description of each part	
1.1.3 Performance specifiation	
1.1.4 Electrical specification	
1.2 Servo motor selection	
1.2.1 Model name	
1.2.2 Description of each part	
1.2.3 Axial force and radial force	
1.3 CABLE SELECTION	
1.3.1 Encoder cable	
1.3.2 Power cable	
1.3.3 EtherCAT communication cable	
1.3.4 Connection cable of driver and motor	
1.4 SELECTION OF OTHER ACCESSORIES	
2 INSTALLATION OF SERVO SYSTEM	
	_
2.1 Servo driver installation	
2.1.2 Environment condition	
2.2 SERVO MOTOR INSTALLATION	
2.2.2 Installation cautions	
2.2.3 Installation environment	
2.3 SERVO CABLE INSTALLATION	
2.3.1 Cable selection	
2.4 Servo driver dimension	
2.4 SERVO DRIVER DIMENSION	
3 SERVO SYSTEM WIRING	
3.1 Main circuit terminal	
3.1.1 Servo driver terminal layout	
3.1.2 Main circuit terminals	
3.1.3 CNO, CN1, CN2, CN3 terminal description	
3.1.3.1 CNO control terminal	
3.1.3.2 CN1 communication terminal description	
3.1.3.3 CN2 encoder interface description	
3.1.3.4 CN3 terminal (RS232)	
3.2 SIGNAL TERMINAL	
3.2.1 SI input signal	
3.2.2 SO output signal	
4 PANEL OPERATION	_
4.1 Basic operation	
4.1.1 Operating panel description	
4.1.2 Button operation	
4.2 OPERATION STATE DISPLAY	
4.3 GROUP U MONITOR PARAMETER	
4.4 Group F auxiliary parameters	
4.4.1 F0-XX	
4.4.2 F1-XX	49

4.5 Fault alarm operation	
4.6 Parameter example	
4.7 CHECK THE MOTOR CODE	51
5 BASIC FUNCTIONS	52
5.1 Absolute value system	
5.1.1 Absolute system setting	
5.1.2 Replace the battery	
5.1.3 The upper limit of turns	
5.1.4 Absolute encoder position calibration	
5.1.4.1 Reset multi-turn absolute position	
5.1.4.2 Zero calibration of absolute encoder	
5.2 POWER-OFF BRAKE	
5.3 STOP MODE	
5.3.1 Servo OFF and alarm shutdown	
5.3.2 Stop mode when overtravel in normal mode	
5.3.3 Stop mode when overtravel in bus mode	
5.4 Position control	
5.4.1 General position control	
5.4.1.1 Electronic gear ratio	
5.4.1.2 Positioning completion signal (/COIN, /COIN_HD)	
5.4.1.4 Command pulse prohibition (/INHIBIT)	
5.4.1.5 Offset clear (/CLR)	
5.4.1.6 Position pulse deviation	
5.4.1.7 Position command filter	
5.4.1.8 Reference origin	
5.4.1.9 Homing function	
5.4.2 Position control (external pulse command)	92
5.4.2.1 External pulse position mode	92
5.4.2.2 Pulse input specification	
5.4.2.3 Pulse command form selection	
5.4.2.4 Pulse command logic form	
5.4.2.5 Pulse command forward direction selection	
5.4.3 Position control (Internal command)	
5.4.3.1 Internal position mode	
5.4.3.3 Position segment 1 to 35 parameter settings	
5.4.3.4 Change step signal (/CHGSTP)	
5.4.3.5 Skip present segment signal (/ZCLAMP)	
5.4.3.6 Set segment through communication	
5.4.3.7 Motion start signal (/MRUN)	101
5.5 Speed control	102
5.5.1 Speed mode general control	102
5.5.1.1 Soft start	-
5.5.1.2 Zero clamp (/ZCLAMP)	
5.5.1.3 Speed reach signal (/V-RDY)	
5.5.1.4 Speed command filter	
5.5.2 Speed control (internal speed)	
5.5.3 Speed control (pulse frequency command)	
5.5.3.1 External pulse speed mode	
5.5.3.2 Pulse frequency command	
5.5.3.3 Command pulse frequency at rated speed	
5.5.3.4 Speed command pulse filter time	
5.5.3.5 Speed command pulse direction	
5.6 Torque control	
5.6.1 Torque control (internal setting)	
5.6.1.1 Internal torque command	
5.6.1.2 Internal speed limit of torque control	
5.6.1.3 Speed reach signal output (/VLT)	
5.7 STO SAFE TORQUE OFF	
5.7.1 STO function overview	109

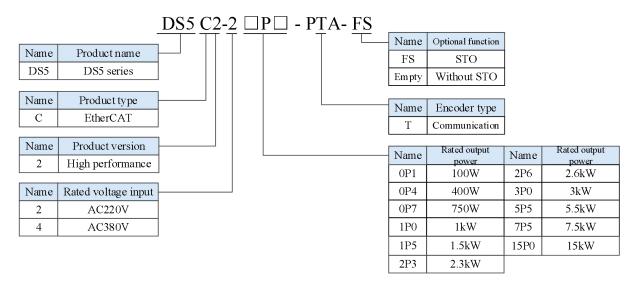
5.7.3 STO parameters	
5.7.4 STO working principle	
5.7.5 STO function precautions	110
5.8 WEAK MAGNETIC CONTROL	
5.8.1Weak magnetic function overview	
5.8.2 Weak magnetic related parameter settings	111
6 ETHERCAT BUS COMMUNICATION	112
6.1 ETHERCAT TECHNICAL OVERVIEW	112
6.1.1 EtherCAT introduction	
6.1.2 System composition(master and slave station)	
6.2 ETHERCAT COMMUNICATION SPECIFICATION	
6.2.1 Communication specification	
6.2.2 EtherCAT frame structure	
6.2.3 State machine ESM	
6.2.4 Slave station controller ESC	
6.2.4.1 Principle overview	
6.2.4.2 Address space	
6.2.5 SII area (0000h ~003Fh)	116
6.2.6 SDO(Service Data Object)	
6.2.6.1 Mailbox frame structure	
6.2.6.2 Mailbox overtime	117
6.2.6.3 Alarm information	118
6.2.7 PDO(Process Data object)	118
6.2.7.1 PDO mapping objects	
6.2.7.2 PDO distribution objects	
6.2.8 Communication synchronization mode	
6.2.8.1 DC(SYNCO event synchronization)	
6.2.8.2 SM2(SM2 event synchronization)	120
7 ETHERCAT BUS CONTROL MODE	121
7.1 ETHERCAT OPERATION	121
7.2 CSP MODE	
7.2 CSP MODE	122
7.2.1 Related parameters	
7.2.1 Related parameters7.2.2 Common parameters	
7.2.1 Related parameters	
7.2.1 Related parameters	
7.2.1 Related parameters	
7.2.1 Related parameters	
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter	
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters	
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE	
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter	
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters	
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters 7.5.3 Homing method	
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters 7.5.3 Homing method 7.6 PP MODE	
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters 7.5.3 Homing method 7.6 PP MODE 7.6.1 Related parameters	
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters 7.5.3 Homing method 7.6 PP MODE 7.6.1 Related parameters 7.6.2 Common parameters	122 126 127 127 130 131 134 135 136 143 143 151 151 158
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters 7.5.3 Homing method 7.6 PP MODE 7.6.1 Related parameters 7.6.2 Common parameters 7.7 PV MODE	122 126 127 130 131 134 135 136 143 151 151 158 160
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters 7.5.3 Homing method 7.6 PP MODE 7.6.1 Related parameters 7.6.2 Common parameters 7.7 PV MODE 7.7.1 Related parameters	122 126 127 130 131 134 135 143 143 151 151 158 160 160
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters 7.5.3 Homing method 7.6 PP MODE 7.6.1 Related parameters 7.6.2 Common parameters 7.7 PV MODE 7.7.1 Related parameters 7.7.2 Common parameters	122 126 127 130 131 134 135 143 143 151 151 158 160 165
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters 7.5.3 Homing method 7.6 PP MODE 7.6.1 Related parameters 7.6.2 Common parameters 7.7 PV MODE 7.7.1 Related parameters 7.7.2 Common parameters 7.7.2 Common parameters 7.8 TQ MODE	122 126 127 130 131 134 135 143 143 151 151 158 160 165 166
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters 7.5.3 Homing method 7.6 PP MODE 7.6.1 Related parameters 7.6.2 Common parameters 7.7 PV MODE 7.7.1 Related parameters 7.7.2 Common parameters 7.8 TQ MODE 7.8.1 Related parameters	122 126 127 130 131 134 135 136 143 151 152 151 152 152 151 152 152 153 154 155 156 166 166 166 166 166 166 166
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters 7.5.3 Homing method 7.6 PP MODE 7.6.1 Related parameters 7.6.2 Common parameters 7.7 PV MODE 7.7.1 Related parameters 7.7.2 Common parameters 7.8 TQ MODE 7.8.1 Related parameters 7.8.1 Related parameters 7.8.2 Common parameters	122 126 127 130 131 134 135 136 143 151 151 158 160 165 166 169
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE 7.3.1 Related parameter 7.3.2 Common parameters 7.4 CST MODE 7.4.1 Related parameter 7.4.2 Common parameters 7.5 HM MODE 7.5.1 Related parameter 7.5.2 Related parameters 7.5.3 Homing method 7.6 PP MODE 7.6.1 Related parameters 7.6.2 Common parameters 7.7 PV MODE 7.7.1 Related parameters 7.7.2 Common parameters 7.8 TQ MODE 7.8.1 Related parameters 7.8.1 Related parameters 7.8.2 Common parameters 7.8.1 Related parameters 7.8.1 Related parameters 7.8 TQ MODE 7.8.1 Related parameters 7.8 TQ MODE 7.8.1 Related parameters	122 126 127 130 131 134 135 136 143 151 151 158 160 165 166 169 170
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE	122 126 127 130 131 134 135 136 143 151 151 152 158 160 165 166 167 170 170
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE	122 126 127 130 131 134 135 136 143 151 151 152 158 160 165 166 167 170 170 170
7.2.1 Related parameters 7.2.2 Common parameters 7.3 CSV MODE	122 126 127 130 131 134 135 136 143 151 151 158 160 165 166 167 170 170 174

186 182 192 192 192 192 192 193 194 202 203 204 205 205 205 205 205 215 215 215 215 215 215 215 215 215 215 215 215 215 215 215 215 215 215
185 192 192 192 193 193 195 196 202 202 202 203 204 205 205 205 216 212 213 213 213
192 192 193 193 195 195 195 195 205 206 206 207 208 208 208 208 216 212 213 213 213
192 192 193 195 195 195 205 206 206 206 207 208 208 208 208 208 208 212 213 213 213 213 213
192 192 193 195 196 202 202 202 203 204 205 205 205 216 215 215 215 215 215 215 215 215 215 215 215 215
192 193 195 196 196 202 203 204 205 205 205 216 215 215 215 215 215 215 215 215 215 215 215 215
192 193 195 196 202 202 204 205 205 205 216 215 215 215 215 215 215 215 215 215 215
198 198 198 202 203 204 205 208 208 208 218 218 218 218 218 218 218 218 218 218 218
198 198 198 202 203 204 205 205 205 205 215 215 215 215 215 215 215
196 198 202 202 202 203 205 205 215 215 215 215 215 215
198 202 203 204 206 206 208 208 216 211 212 213 213 213
202 202 202 203 203 203 203 203 213 213 213 213 213
202 203 204 206 208 208 208 216 212 213 213 213
203 204 204 205 205 205 215 215 215 215 215 215 215 215 215
204 204 205 205 205 215 215 215 215 215 215 215
202 203 205 205 205 215 215 215 215 215 215 215
200200200200210211212213213213
202 203 203 216 216 212 213 213 213
208 209 209 210 211 212 213 213 213 213
209 209 210 211 212 213 213 213 213
209 210 211 212 213 213 213 213
209 210 211 212 213 213 213 213
210211212213213213213
21: 21: 21: 21: 21: 21: 21: 21:
212 213 213 213 213
21. 21. 21. 21. 21. 21.
21. 21. 21. 21. 21. 21.
212 213 213 213
213 213 213
213 213
213
213
213
217
21
21
21
220
22
22:
22
22:
222
226
23:
233
233
233
234
23
23
23
23
23

9.6.7 Invalid parameters when adaptive effective	
9.7 VIBRATION SUPPRESSION	238
9.7.1 Overview	238
9.7.2 Operation tools	238
9.7.3 Vibration suppression (fast FFT)	
9.7.4 Vibration suppression (PC software)	239
9.7.5 Vibration suppression(manual setting)	240
9.7.6 Notch filter	240
9.8 Gain adjustment application	242
9.8.1 Model loop control	242
9.8.2 Torque disturbance observation	244
9.8.3 Gain adjust parameters	244
9.8.4 Gain switch	245
9.8.5 Speed loop P-PI mode switching	249
9.9 GAIN ADJUSTMENT	250
9.9.1 Load shaking	250
9.9.2 Vibration	250
9.9.3 Noise	250
10 ALARM	254
10 ALAKM	251
10.1 ETHERCAT RELATED COMMUNICATION ALARM CODE	251
10.2 ETHERCAT COMMUNICATION UNRELATED ALARM	255
10.3 ALARM READ	264
10.4 ALARM CLEAR	264
11 APPLICATIONS	265
11.1 XINJE XG2/XDH AND DS5C2 ETHERCAT COMMUNICATION	265
11.1.1 System configuration	265
11.1.2 System topology	265
11.1.3 Debugging steps	265
11.2 BECKHOFF TWINCAT AND XINJE DS5C2	294
11.2.1 System configuration	294
11.2.2 System topology	294
11.2.3 Commissioning steps:	294
11.3 CODESYS AND XINJE DS5C2 ETHERCAT COMMUNICATION EXAMPLE	307
11.3.1 System topology	307
11.3.2 System topology	307
11.3.3 Debugging steps	307
11.4 OMRON AND DS5C2 SERVO ETHERCAT COMMUNICATION EXAMPLE	327
11.4.1 System configuration	327
11.4.2 System topology	327
11.4.3 Debugging steps	328
APPENDIX	242
ATTENDIA	342
APPENDIX 1. DRIVER PARAMETERS	342
Appendix 1.1 PX-XX	342
Appendix 1.2 FX-XX	356
Appendix 1.3 U0-XX	356
APPENDIX 2. OBJECT DICTIONARY	
Appendix 2.1 COE communication area (0x1000-0x1FFF)	
Appendix 2.2 Servo parameter area	
Appendix 2.3 Driver Profile area(0x6000~0x6FFF)	
APPENDIX 3. GLOSSARY OF TERMS	

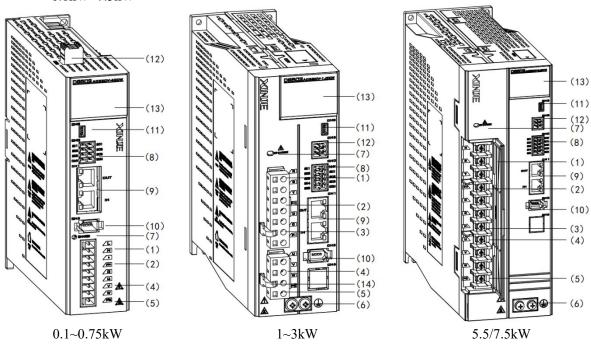
► Confirmation on product arrival

After the product arrives, please confirm the integrity of the product in the following aspects.


Items	Notes		
Does the product on arrival match the	Please confirm according to the nameplate of servo		
specified model?	motor and servo unit.		
Does the servomotor shaft rotate smoothly?	The servo motor shaft is normal if it can be turned		
	smoothly by hand. Servo motors with brakes, however,		
	cannot be turned manually.		
Is there any damage?	Check the overall appearance, and check for damage or		
	scratches that may have occurred during shipping.		
Are there any loose screws?	Check screws for looseness using a screwdrive.		
Is the motor code the same with the code in	Check the motor code marked on the nameplates of the		
drive?	servomotor and the parameter U3-70 on the servo		
	drive.		

If any of the above is faulty or incorrect, contact Xinje or an authorized distributor.

1 Selection of servo system


1.1 Selection of servo driver

1.1.1 Model name

1.1.2 Description of each part

■ 0.1kW~7.5kW



The names of each part of the 0.1kW~7.5kW servo drive are as follows:

٠.	or each p	art of the o.rk way. Jk w servo urr	ve are as ronows.		
	No.	Name	Explanation		
	(1)	L/N, L1/L2/L3, R/S/T Main circuit power input terminal	Refer to driver nameplate rated voltage level input main circuit power supply: L/N: single-phase 220V main circuit power supply; L1/L2/L3: single-phase/three-phase main circuit power supply; R/S/T: three-phase 380V main circuit power supply.		
	(2)	P+, D, C brake resistor connection terminal When using the built-in braking resistor, short-circ P+ and D terminals, and disconnect the P+ and C; When using an external braking resistor, remove			

		and D short connection and connect the braking resistor to the P+ and C terminals.		
(3)	P+, P- bus terminal	Driver bus terminal.		
(4)	U, V, W servo motor power terminal	Connect the servo motor phase U/V/W.		
(5)	PE motor grounding terminal	Connect to the motor grounding terminal and perform grounding treatment.		
(6)	driver grounding terminal	Connect to external ground stakes for grounding treatment, Connect to the power grounding terminal and perform grounding treatment. Used to indicate that the bus capacitor is in a charged state. When the indicator light is on, even if the main circuit power is turned off, there may still be charges in the internal capacitors of the servo unit. Therefore, do not touch the power terminal when the light is on to avoid electric shock.		
(7)	CHARGE Bus voltage indicator light			
(8)	CN0: input output terminals	Input/output control signal terminals.		
(9)	CN1: EtherCAT port	EtherCAT communication ethernet cable port		
(10)	CN2: encoder port	Connect to the motor encoder terminal.		
(11)	CN3: RS232 port	RS232 communication interface, connected to the servo upper computer debugging software for communication.		
(12)	CN5: STO Safety function terminal	STO function safety terminal, used for application scenarios of safety functions, external safety function signal access.		
(13)	Driver display panel	5-digit 8-segment LED digital tube, used to display the operating status and parameter settings of the servo.		
(14)	Wiring auxiliary buckle	Used for installation and wiring assistance of needle terminals.		

■ 15kW servo driver

The names of each part of the 15kW servo drive are as follows:

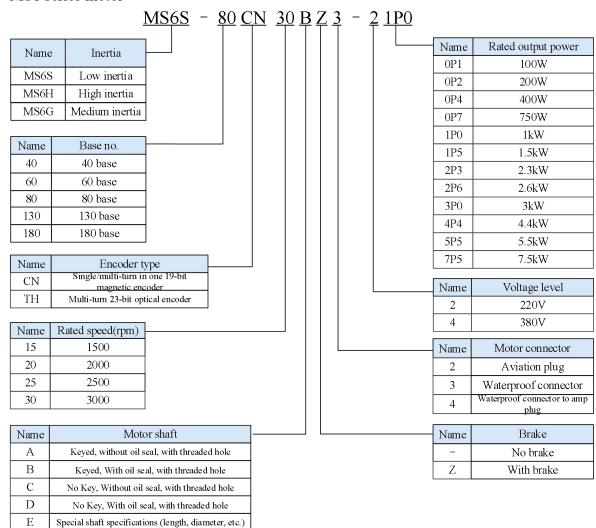
C	es of each part of the 13kW servo drive are as follows.						
	No.	Name	Explanation				
	(1)	R/S/T main circuit power supply input terminal	Refer to driver nameplate rated voltage level input main circuit power supply: R/S/T: three-phase 380V main circuit power supply.				
	(2)	U, V, W servo motor power terminal	Connect the servo motor phase U/V/W.				

(3)		Connect to the motor grounding terminal and perform		
		grounding treatment,		
	PE grounding terminal	Connect to external ground stakes for grounding		
	1 L grounding terminal	treatment,		
		Connect to the power grounding terminal and perform		
		grounding treatment.		
(4)	P+, P- bus terminal	Driver bus terminals.		
(5)	PB terminal	When using an external braking resistor, connect the		
	rb terminar	braking resistor to the P+ and PB terminals.		
(6)	CN0: input output terminals	Input/output control signal terminals.		
(7)	CN1: EtherCAT port EtherCAT communication ethernet cable port			
(8)	CN2: encoder port Connect to the motor encoder terminal.			
(9)	CN3: RS232 port	RS232 communication interface, connected to the servo		
	CN3. KS232 port	upper computer debugging software for communication.		
(10)	Driver display panel	5-digit 8-segment LED digital tube, used to display the		
	Driver display paller	operating status and parameter settings of the servo.		
(11)	D1 1	Four panel operation buttons are used to view the		
	Panel buttons	operation status and set parameters of the servo.		
(12)		Used to indicate that the bus capacitor is in a charged		
		state. When the indicator light is on, even if the main		
	PWR Bus voltage indicator	circuit power is turned off, there may still be charges in		
	light	the internal capacitors of the servo unit. Therefore, do		
		not touch the power terminal when the light is on to		
		avoid electric shock.		

1.1.3 Performance specifiation

Servo unit		DS5C2 series servo driver		
Applicable encoder		Standard: 19bit/23bit communication encoder		
Input power supply (If using single-phase 220V power and L3, otherwise power failured)		DS5C2-2□P□-PTA: single phase/three phase AC200~240V, 50/60Hz (If using single-phase 220V power supply, it is necessary to connect to L1 and L3, otherwise power failure will affect parameter memory) DS5C2-4□P□-PTA: Three phase AC380~440V, 50/60Hz		
Control mo				
condition temperature Storage temperature Environment humidity Vibration resistance Altitude		-10~+40 °C		
		-20~+60 °C		
		Below 90% RH (no condensation)		
		4.9m/s^2		
		Not exceeding 1000m, please reduce the rating when exceeding 1000m (1% reduction for every 100m higher)		

1.1.4 Electrical specification

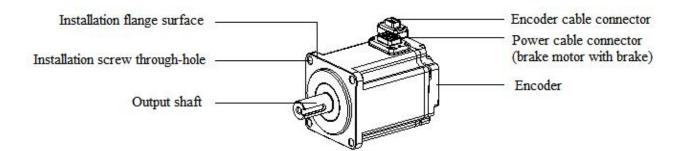

Driver model	Driver power (kW)	Continuous output current (A)	Maximum output current (A)	Power input current (A)	Power supply	Cooling method
DS5C2-20P1-PTA	0.1	0.9	3.15	1.3	Single phase	Self cooling
DS5C2-20P4-PTA	0.4	2.8	9.8	4	AC200~240V,	Self cooling
DS5C2-20P7-PTA	0.75	4.8	16.8	5.5	50/60Hz	Air cooling

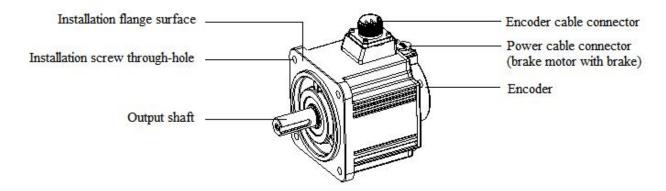
Driver model	Driver power (kW)	Continuous output current (A)	Maximum output current (A)	Power input current (A)	Power supply	Cooling method
DS5C2-21P0-PTA	1.0	6	18	9	Single	Air cooling
DS5C2-21P5-PTA	1.5	8	20	9	phase/three-phase	Air cooling
DS5C2-22P3-PTA	2.3	9	18	8	AC200~240V,	Air cooling
DS5C2-22P6-PTA	2.6	10.5	29.93	10	50/60Hz	Air cooling
DS5C2-41P0-PTA	1.0	3.2	9.6	2.6		Air cooling
DS5C2-41P5-PTA	1.5	5.5	13.75	2.6		Air cooling
DS5C2-42P3-PTA	2.3	8.5	21.75	6.8	Three-phase	Air cooling
DS5C2-43P0-PTA	3.0	11	29.7	8	AC380~440V,	Air cooling
DS5C2-45P5-PTA	5.5	20	50	16	50/60Hz	Air cooling
DS5C2-47P5-PTA	7.5	25	62.5	20		Air cooling
DS5C2-415P0-PTA	15	35	87.5	30		Air cooling

1.2 Servo motor selection

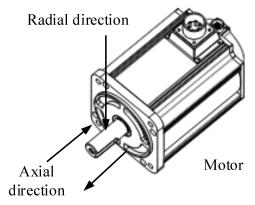
1.2.1 Model name

■ MS6 series motor

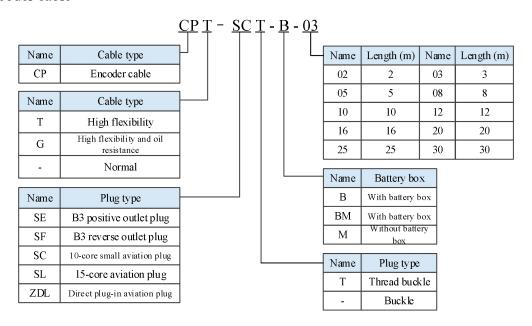


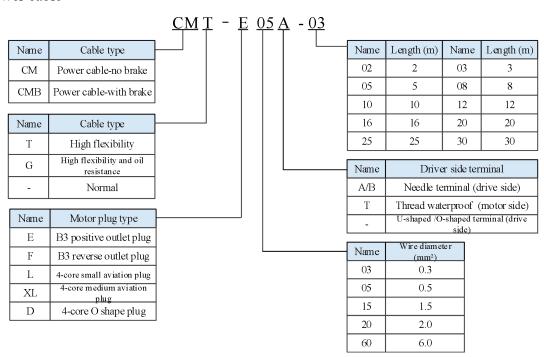

At present, the selection of encoder types for DS5C2 series servo adaptation is only a combination of CN and TH!

1.2.2 Description of each part

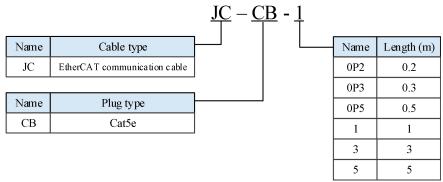

■ 40/60/80 base motor

■ 130/180 base motor


1.2.3 Axial force and radial force


Base no.	40ST	60ST	80ST	100ST	110ST	130ST	180ST	220ST/265ST
Axial force	54N	74N	147N	≤200N	250N	300N	400N	≤500N
Radial force	78N	245N	392N	500N	500N	600N	800N	1000N

1.3 Cable selection

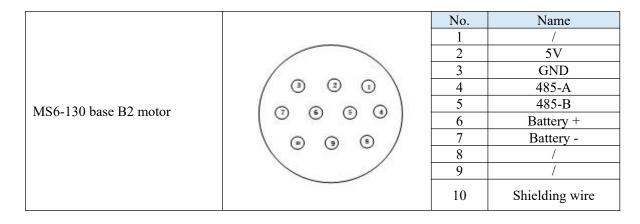

1.3.1 Encoder cable

1.3.2 Power cable

1.3.3 EtherCAT communication cable

Note: At present, the length of communication cables is 0.2 m, 0.3 m, 0.5 m, 1 m, 3 m, 5 m, 10 m, 20 m.

1.3.4 Connection cable of driver and motor


■ Encoder cable interface

(1) Pin definition of encoder on servo driver side

2 4 6	Pin definition				
	No.	Name	No.	Name	
	1	5V	4	/	
1 3 5	2	GND	5	485-A	
7.5kW and below	3	/	6	485-B	
5 9	No.	Name	No.	Name	
	1	Temperature sensor	6	GND	
	2	Temperature sensor	7	/	
	3	485-B	8	5V	
	4	485-A	9	/	
11kW and up	5	Shield wire	-	-	

(2) Cable connection of encoder on motor side

Motor model	Connector pins	Inter	face pin definition
		No.	Name
	5 0 0 4 0 0 7	1	5V
		2	GND
MS6 40 60 90 hasa D2 matar	3 1	3	BAT+
MS6-40, 60, 80 base B3 motor	1000	4	BAT-
	Positive outlet reverse outlet	5	485-A
	(user's view)	6	485-B
		7	Shielding layer

		No.	Name
		1	Shielding wire
		2	/
	(9 (1)	3	485-B
	/ 6 4 3 \	4	485-A
MS6-180 base B2 motor	(m 9 s 7 s)	5	/
	(10 9 8 7 6)	6	GND
	\ 13 12 10 /	7	Battery -
	(15) (14)	8	5V
		9	Battery +
		10-15	/
		No.	Name
		1	Shielding wire
		2	/
	(2 (1)	3	485-B
	/ \	4	485-A
	/ 5 4 3 \	5	/
MS6-200 base B2 motor	(10 9 8 7 6	6	GND
		7	Battery -
	\ 13 12 11 /	8	5V
	(15 (14)	9	Battery +
		10-13	/
		14	Temperature -
		15	Temperature +

Battery box description:

- (1) The encoder including the cable definition of battery +, battery- is for the absolute motor, and the non-absolute motor cable has no such pin.
- (2) Only the cable of absolute value motor has external battery box, which contains a 3.6V/2.7Ah large capacity battery, and has the function of replacing batteries when power off. The using life is more than two years. Please refer to chapter 5.2 for battery replacing.

At present, the length of encoder cables is 2 meters, 3 meters, 5 meters, 8 meters, 10 meters, 12 meters, 16 meters, 20 meters, 25 meters, 30 meters, 35 meters, 40 meters, 45 meters, and 50 meters.

Power cable

(1) Pin definition of power cable on servo driver side (Needle terminals are installed and wired using random buckles)

Motor model	Connector appearance	Interface p	oin definition
		Color	Name
		Red	U
	V -	White	V
		Black	W
MS6-40, 60, 80 base motor	BK∃-	Yellow	DE
	EK∃ ■	green	PE
	(PE)	Blue	BK+
		Brown	BK-
		Color	Name
	(Brown	U
		Black	V
MGC 1201		Blue	W
MS6-130 base motor	EKB=	Yellow	PE
	EKS TO THE PART OF	green	
		Red	BK+
		Black	BK-
		Color	Name
	<u>U</u>	Brown	U
		/red	
		Black	V
		/yellow Blue	W
MS6-180 base motor	Н	Yellow	vv
	П		PE
		green Red	BK+
		Black	
		/white	BK-
		Color	Name
	100-02-0	Red	U
1666 2001	a	Yellow	V
MS6-200 base motor	뉴	Blue	W
	LL).	Yellow	
		green	PE

(2) Power cable connection on motor side

Motor model	Connector pins		ce pin definition
		No.	Name
	3 (M) (M) (M)	1	W
		2	V
MS6-40 base B3 motor		3	U
Wiso-40 base B3 motor	1 4 6 4 3	4	PE
	Positive outlet reverse outlet	5	BK+
	(user's view)	6	BK-
		7	Shielding layer

		No.	Name
	1 A B 4	1	U
	3 A A A A A A A A A A A A A A A A A A A	2	V
MS6-60, 80 base B3 motor	4	3	W
Wiso-oo, oo base B3 motor	B 1	4	PE
	Positive outlet reverse outlet	A	BK+
	(user's view)	B	BK-
		No.	Name
		A	W
MS6G-130 base non brake	(D) (A) \	В	V
motor	(C) (B)	C	U
	(E) (B)	D	PE
		No.	Name
	(0 0)	A	W
1000	(_ (b) (b) (c)	В	V
MS6G-130 base brake motor	(0 _ 0)	С	U
	\ © ® /	D	PE
		1	BK+
		2	BK-
	(P) (A)	No.	Name
		A	PE
MS6G-180 base non brake	(0 0)	В	W
motor	\ © B /	С	V
		D	U
	000000	No.	Name
		A	PE
MS6G-180 base brake motor	(D A)	В	W
	(② ①)	С	V
	(② 10)	D	U
		1	BK+
		2	BK-
		No.	Name
	(0)	1	PE
MS6H-180 base non brake	(@ @)	2	U
motor		3	V
	0	4	W
		No.	Name
		A	U
	(D O)	В	V
MS6H-180 base brake motor	(@)	С	W
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	D	PE
		1	BK+
		2	BK-

			Color	Name
	MSCII 200 hasa busha matan		Red	U
MS6H 20			Yellow	V
MS6H-200 base brake motor	Д	Blue	W	
		Yellow	DE	
		***************************************	green	PE

Brake pins:

The cable including pin BK+, BK- is used for the brake motor. The cable of the non-brake motor has no BK pins. At present, the length of power cables is 2 meters, 3 meters, 5 meters, 8 meters, 10 meters, 12 meters, 16 meters, 20 meters, 25 meters, 30 meters, 35 meters, 40 meters, 45 meters, and 50 meters.

1.4 Selection of other accessories

When the servo motor is driven by the generator mode, the power returns to the servo amplifier side, which is called regenerative power. The regenerated power is absorbed by charging the smooth capacitor of the servo amplifier. After exceeding the rechargeable energy, the regenerative resistance is used to consume the regenerative power.

- The deceleration stop period during acceleration and deceleration operation.
- ◆ Running vertically and axially.
- When the external load drives the motor to rotate.

Servo driver model	Regenerative resistance connection terminals
DS5C2-□□P□-PTA	 (1) Using a built-in braking resistor, short circuit the P+ and D terminals, and disconnect the P+ and C. (2) When using an external braking resistor for drives with built-in braking resistors of 7.5kW and below, connect the braking resistor to the P+ and C terminals, remove the P+ and D short circuits, P0-25=power value, and P0-26=resistance value. (3) When using an external braking resistor for a 15kW driver, connect the braking resistor to the P+ and PB terminals, P0-25=power value, and P0-26=resistance value.

The following table is the recommended specifications of external regenerative resistance for each type of motor.

Servo driver model	Bulit-in brake unit	Minimum resistance(no less than this value)	External regenerative resistance(recommended resistance value)	External regenerative resistance(recommended power value)
DS5C2-20P1-PTA	/	80Ω	80Ω - 100Ω	Above 200W
DS5C2-20P4-PTA	/	0052	8052-10052	Above 200 W
DS5C2-20P7-PTA	$80W50\Omega$	50Ω	50Ω - 100Ω	Above 600W
DS5C2-21P0-PTA	80W45Ω	35Ω	35Ω - 75Ω	Above 800W
DS5C2-21P5-PTA	$80W50\Omega$	30Ω	30Ω - 50Ω	
DS5C2-22P3-PTA	$80W50\Omega$	3052	3022-3022	Above 1000W
DS5C2-22P6-PTA	$80W50\Omega$	25Ω	25Ω - 50Ω	
DS5C2-41P0-PTA	80W100Ω	120Ω	120Ω - 150Ω	Above 800W
DS5C2-41P5-PTA	80W100Ω	75Ω	75Ω - 120Ω	Above 1000W
DS5C2-42P3-PTA	$80W60\Omega$	55Ω	55Ω - 75Ω	Above 1000W
DS5C2-43P0-PTA	80W60Ω	50Ω	50Ω - 75Ω	Above 1200W
DS5C2-45P5-PTA	/	25Ω	25Ω - 65Ω	Above 2000W
DS5C2-47P5-PTA	/	22Ω	22Ω - 50Ω	Above 2500W
DS5C2-415P0-PTA	/	20Ω	20Ω - 45Ω	Above 3000W

Note

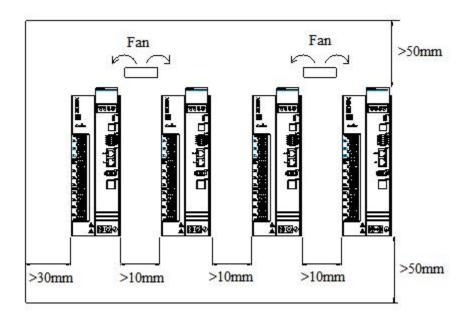
- 1) When selecting external resistance, "resistance" try to choose close to the "minimum resistance" in the "recommended resistance". The smaller the resistance, the faster the discharge will be. The selection of "power" should be based on the actual use on site, and the specific should depend on the calorific value. Generally, the external regenerative resistor with higher power should be selected as far as possible.
- 2) The surface temperature of the regenerative resistance will be very high when it is frequently discharged. Please use high-temperature resistant and flame-retardant wires when wiring, and note that the surface of the regenerative resistance can not contact with the wire.

2 Installation of servo system

2.1 Servo driver installation

2.1.1 Installation site

- Please install it in the installation cabinet without sunshine or rain.
- ◆ Do not use this product near corrosive and flammable gas environments and combustibles such as hydrogen sulfide, chlorine, ammonia, sulfur, chlorinated gas, acid, alkali, salt, etc.
- Do not install in high temperature, humidity, dust, metal dust environment.
- No vibration place.


2.1.2 Environment condition

Item	Description
Using ambient temperature	-10~40°C
Using ambient humidity	20~90%RH (no condensation)
Storage temperature	-20~60°C
Storage humidity	20~90%RH (no condensation)
Vibration resistance	Not more than 4.9m/s ²
	Not exceeding 1000m, please reduce
Altitude	the rating when exceeding 1000m (1%
	reduction for every 100m higher)

2.1.3 Installation standard

Please be sure to comply with the installation standard in the control cabinet shown in the figure below, which is applicable to the situation where multiple servo drives are installed side by side in the control cabinet (hereinafter referred to as "side by side installation").

■ 3kW and below drivers

■ Servo driver orientation

When installing, please make the front of the servo driver (the actual installation surface of the operator) face the operator and make it perpendicular to the wall. For drives with regenerative resistors at the bottom, please pay attention to the heat dissipation of the mounting surface to avoid overheating and fire.

■ Cooling

As shown in the figure above, allow sufficient space around each servo drive for cooling by fans or natural convection.

■ Side-by-side installation

As shown in the above figure, when installing drivers side by side in the installation cabinet:

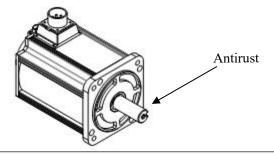
Drivers with a power output of 3kW and below should have a space of at least 10mm on each side horizontally and at least 50mm on each side longitudinally;

A 5.5kW~7.5kW drive should have a space of at least 40mm on each side horizontally and at least 80mm on each side longitudinally;

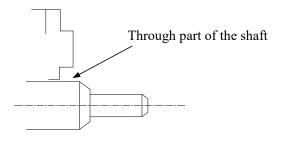
The 15kW driver needs to be at least 50mm horizontally from the installation cabinet on both sides, and at least 100mm vertically from the installation cabinet on both sides.

In addition, in order to prevent local overheating of the servo drive environment, it is necessary to maintain a uniform temperature inside the control cabinet.

- Environmental conditions in the control panel
 - ♦ Servo driver working ambient temperature: -10~40°C.
 - ♦ Humidity: Below 90%RH(relative humidity)
 - ♦ Vibration: 4.9m/s²
 - ◆ Please do not allow it to freeze or condense.
 - ♦ In order to ensure the reliability of long-term use, please use it at an ambient temperature lower than 50°C.


2.2 Servo motor installation

MS6 series servo motors can be installed either horizontally or vertically. The service life of the servo motor can be shortened or unexpected problems might occur if it is installed incorrectly or in an inappropriate location. Follow the installation instructions carefully.


Caution

- 1. The shaft end is coated with antirust. Please wipe the "antirust" with a cloth soaked in "thinner" before installing the motor.
- 2. Avoid getting thinner on other parts of the servo motor.

2.2.1 Environment condition

When used in places with water droplets or oil droplets, the protection effect can be achieved through the treatment of motors. However, in order to seal the through part of the shaft, please specify the motor with oil seal. Connectors should be installed downward.

MS6 series servo motors are intended for indoor use. Please use them in an environment that meets the following installation conditions.

g mstanation continues.	
Item Description	
Using ambient temperature	-10°C~40°C(no freeze)
Using ambient humidity	20%~90%RH(no condensation)
Storage temperature	-20°C~60°C
Storage humidity	20%~90%RH(no condensation)
Protection level	IP67 (MS6 series B3 motor, MS6G series B2 motor) IP65 (MS6H series B2 motor)

2.2.2 Installation cautions

Item	Description	
Antirust	◆ Please wipe the "antirust" on the shaft extension end of the servo motor before	
treatment	installation, and then do relevant rust prevention treatment.	
Encoder cautions	 ◆ Do not hit the shaft extension end during installation, otherwise the internal encoder will be broken. ◆ When installing a pulley on a servo motor shaft with a keyway, a screw hole is used at the shaft end. To install the pulley, first insert the stud into the screw hole of the shaft, use a washer on the surface of the coupling end, and gradually lock the pulley with a nut. ◆ For the servo motor shaft with keyway, use the screw hole at the end of the shaft to install. For shaft without keyway, friction coupling or similar methods are used. ◆ When disassembling the pulley, use the pulley extractor to prevent the shaft from bearing the strong impact of the load. ◆ To ensure safety, install protective covers or similar devices in the rotating area, such as pulleys installed on shafts 	
Centering	♦When installing the servo motor, ensure that it meets the centering accuracy requirements shown in the following figure. If the centering is not sufficient, vibration may occur and sometimes damage bearings and encoders. When installing the coupling, please do not directly impact the motor shaft, otherwise it will damage the encoder installed on the opposite side of the load shaft end.	

Item	Description
	Measure at 4 points in a circle, with a maximum and minimum difference of 0.03mm or less (rotating together with the coupling)
	Measure at 4 points in a circle, with a maximum and minimum difference of 0.03mm or less (rotating together with the coupling)
Installation direction	◆ The servo motor can be installed in the horizontal or vertical direction.
Oil and water countermeasures	When using in places with water droplets, please confirm the protection level of the servo motor before use. (Except for the shaft through part) When using in places where oil droplets may drip onto the shaft through part, please specify a servo motor with oil seal. Service conditions for servo motors with oil seals: Please ensure that the oil level is below the lip of the oil seal when using. Please use the oil seal in a state where it can maintain good splashing of oil droplets. When installing the servo motor vertically upwards, please be careful not to accumulate oil on the oil seal lip.
Stress condition of cables	◆ Do not bend or apply tension to the wires, especially when the core wire of the signal wire is 0.2mm or 0.3mm, which is very thin. Therefore, when wiring (using), please do not tension it too tightly.
Handling of the connector section	Regarding the connector section, please note the following: When connecting the connector, please confirm that there is no garbage or foreign objects such as metal sheets inside the connector. When connecting the connector to the servo motor, be sure to first connect it from one side of the main circuit cable of the servo motor, and the grounding wire of the main cable must be reliably connected. If one side of the encoder cable is connected first, the encoder may malfunction due to the potential difference between PE. When wiring, please confirm that the pin arrangement is correct and error free. The connector is made of resin. Do not apply impact to avoid damaging the connector. When carrying out transportation operations while the cables are still connected, be sure to hold the main body of the servo motor. If only the cable is grabbed for handling, it may damage the connector or pull the cable. If using bent cables, full attention should be paid during wiring operations to avoid applying stress to the connector section. If stress is applied to the connector section, it may cause damage to the connector.

2.2.3 Installation environment

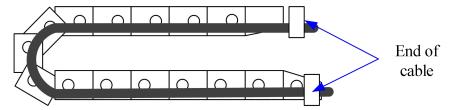
- Do not use this product near corrosive and flammable gas environments and combustibles such as hydrogen sulfide, chlorine, ammonia, sulfur, chlorinated gas, acid, alkali, salt, etc.
- Please choose motor with oil seal in places with grinding fluid, oil mist, iron powder, cutting, etc.
- In places with grinding fluid, oil mist, iron powder, cutting ,etc., please choose motor with oil seal.
- Keep away from furnaces and other heat sources.
- Do not use the motor in a closed environment. The enclosed environment will lead to high temperature of the motor and shorten its service life.

2.3 Servo cable installation

DS5 series servo motor adopts communication encoder, which may cause uncertain influence due to improper use and environmental factors. When installing power cable and encoder cable, please pay attention to the following instructions.

2.3.1 Cable selection

Our regular cable materials include ordinary cable and high flexible cable. The adapter cable connector for motors with 80 flange or less is divided into aviation plug and amp plug; the adapter cable connector for motors with 80 flange or more is aviation plug.

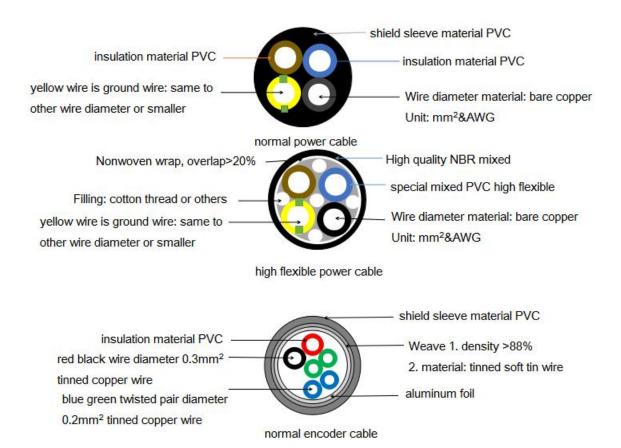

The cable selected by the customer needs to define the operating conditions on site.

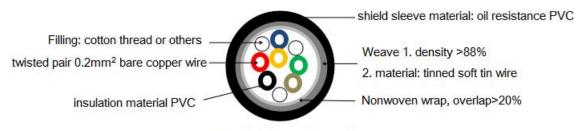
If the cable is used in general occasions, please select the cable from other manufacturers (2.3.2 specifications of Xinje cable) in strict accordance with the specifications given by Xinje. If the cable is used in unconventional occasions, please select the cable according to the actual working conditions to be superior to the existing specifications of Xinje.

- 1. In normal situations, the following points should be noted:
 - For pulse command signal cable, please ensure wiring less than 3m.
 - ♦ The encoder cable shall be within 20 meters. It is recommended to select special cable if it is more than 20 meters. The wire diameter of encoder cable depends on the length of encoder cable used on site. The longer the cable is, the greater the wire resistance is, and the more severe the voltage attenuation or signal distortion is, which is likely to cause pulse loss or no signal can be detected. Therefore, in general, the customized special cable should be selected if it is more than 20 meters.
 - ♦ The power cable diameter depends on the current condition of the motor. Generally, the wire diameter is 1/10 of the maximum current of the motor. For example, the maximum current of the motor is 60A, and the wire diameter of 6mm² is selected.
 - ◆ In case of interference, it is necessary to separate strong and weak current. It is recommended to separate power cable from encoder cable and signal cable.
 - Ensure the correct grounding of servo driver and servo motor. The grounding resistance is not more than 4Ω , and the grounding depth is more than 2m. It is recommended to use 4*40 angle galvanized steel or 40mm diameter galvanized steel pipe;
 - ♦ If the customer makes the wire by himself, the cable specification please refer to chapter 2.3.2 Xinje cable specification, the welding reliability shall be ensured when making the wire to avoid false welding, bridge connection, wrong welding, missing welding, etc., and the continuity of both ends of the cable can be tested after the welding is completed.
 - 2. In unconventional occasions, the following items shall be noted:

(1) Occasions of dragging and bending cables

- ◆ Do not bend the cable or bear the tension. As the core diameter of signal cable is only 0.2mm or 0.3mm, it is easy to break, please pay attention to it when using.
- ♦ When the cable needs to be moved, please use flexible cable. Ordinary cable is easy to be damaged after long-term bending. Small power motor (motor below 80 flange) with its own cable can not be used for cable movement.
- When using cable protection chain, please ensure that:
 - 1) The bending radius of the cable is more than 10 times of the outer diameter of the cable; 2) The wiring in the cable protection chain shall not be fixed or bundled, only the two immovable wires end in the cable protection chain shall be bound and fixed;
 - (3) Do not twist the cable;
 - (4) The duty cycle in the cable protection chain shall be less than 60%;
 - (5) Do not mix the cables with too big difference in appearance. The thin wire will be broken by the thick wire. If it is necessary to mix the wiring, partition device is arranged in the middle of the cable.




- (2) Greasy and humid occasions
- It is recommended to select cable with aviation plug as connector instead of AMP interface cable.
- It is necessary to make corresponding protection (glass glue/insulating cloth binding, etc.) for the used AMP interface cable on site.
- Use special cable.
- (3) Interference, high current / high power occasions (such as welding equipment)
- ◆ The motor is properly grounded.
- High current equipment shall be grounded separately.
- Reasonable wiring. Such as separation of strong and weak current cables.
- Use metal shielding layer to shield, add magnetic ring to the encoder cable to resist interference.
- (4) Low / high temperature
- Select cables (special cables) that meet the use conditions.

2.3.2 Xinje cable specification

1. Material composition of Xinje cable

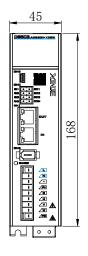
Cross section of cable (encoder, power cable), corresponding introduction of wire skin material, wire diameter, wire core material shielding material, etc.

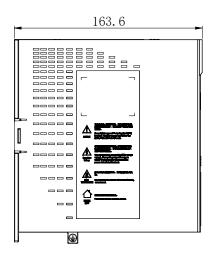
high flexible encoder cable

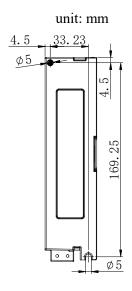
2. Cable diameter specification

	Encoder cable diameter		Power cable diameter		
Base no.	Whole cable diameter	Single cable diameter	Whole cable diameter (non brake/brake)	Cable core diameter	Brake cable core diameter
40 base	6	Below 30m:	Normal, high flexibility: 5.2/5.8 mm	4*0.3 mm ²	
60, 80 base	6 mm	3P*0.2 mm ²	Normal, high flexibility: 6.2/6.5 mm	4*0.5 mm ²	
130 base		30 m~50 m: 2P*0.2 mm ² +	Normal: 9.4/9.4mm High flexibility: 9.6/9.6 mm	4*1.5 mm ²	2*0.22
180 base 3kW	6.2 mm	1P*0.34 mm ² 50m and	Normal: 9.7/9.8 mm High flexibility: 9.8/9.8 mm	4*2.0 mm ²	2*0.3 mm ²
180 base above 3kW		above: 2P*0.2 mm ² +	Normal: 14.5/14.5 mm High flexibility: 15.8/15.8 mm	3*6.0 mm ² +	
200 base	7.9 mm	1P*0.4 mm ²	Normal: 14.5mm High flexibility: 15.5mm	1*2.5 mm ²	

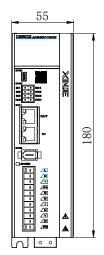
The signal cables (485-A and 485-B) in encoder cables of 30m and above should have thicker diameters to prevent long-distance signal attenuation and external interference from affecting the encoder feedback signal.

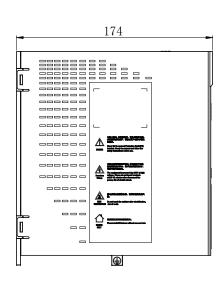

3. Cable performance specification

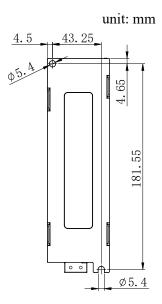

Performance		Normal cable	High flexible cable
Ordinary temperature		-20°C~80°C	-20°C~80°C
resistance			
	ble withstand	1000V/min	1000V/min
vo	ltage		
Power cab	le withstand	3000V/min	3000V/min
vo	ltage		
	Bending	Travel ≤ 10 m, 7.5*D;	Travel <10m, 7.5*D;
radius		Travel ≥ 10 m, $10*D$;	Travel ≥10m, 10*D;
Mobile	D 4!	Travel ≤ 10 m, ≥ 1 million times;	Travel <10m, ≥3 million
installation Bending resistance		Travel ≥ 10 m, ≥ 2 million times;	times;
	times		Travel ≥10m, ≥5 million
times			times;
Fixed	Bending	5*D	5*D
installation radius			


Note: D represents the finished product cable diameter.

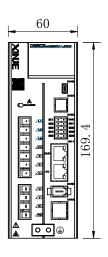
2.4 Servo driver dimension

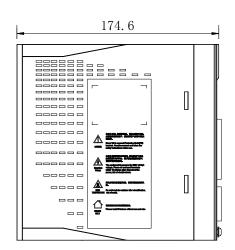

■ DS5C2-20P1/20P4-PTA

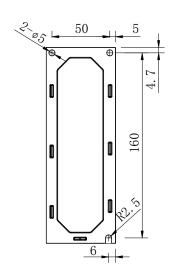




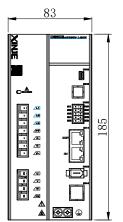
■ DS5C2-20P7-PTA

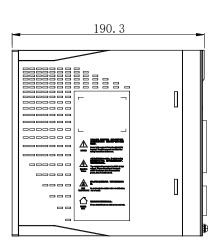


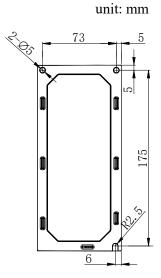


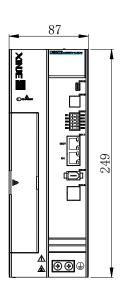


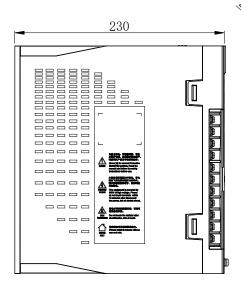
■ DS5C2-21P0/41P0/41P5-PTA

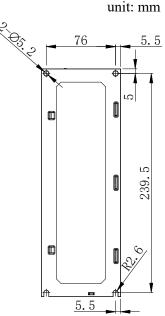

unit: mm

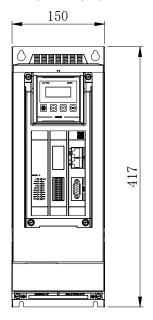


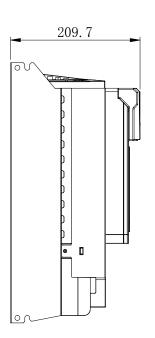


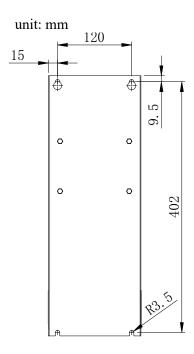

■ DS5C2-21P5/22P3/22P6/42P3/43P0-PTA



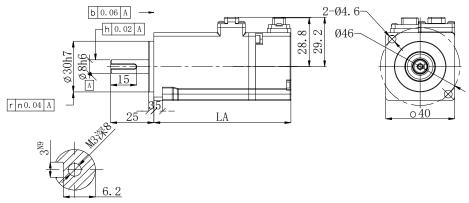


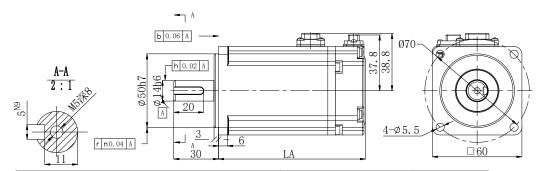

■ DS5C2-45P5/47P5-PTA



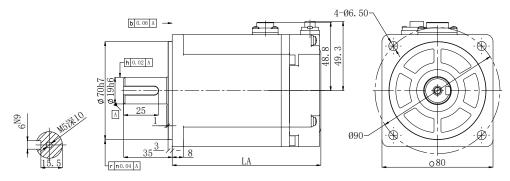


■ DS5C2-415P0-PTA

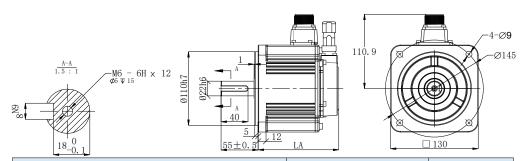



2.5 Servo motor dimension

■ 40 series motor installation dimensions Unit: mm


	LA	Inertia	
Motor model	Normal	With brake	level
MS6H-40CN30B□3-20A5-S	60.8	93.4	Hinh
MS6H-40□□30B□3-20P1	79.4	112	High inertia
MS6H-40CN30B□3-20P1-S	77.4	110	merna

■ 60 series motor installation dimensions Unit: mm

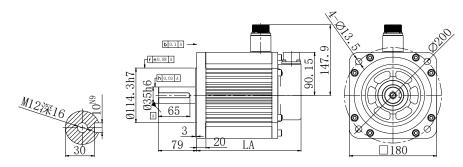

	LA	LA±1	
Motor model	Normal	With brake	Inertia level
MS6H-60□□30B□3-20P2	76.4	99.15	High
MS6H-60CN30B□3-20P2-S	66.7	93.5	inertia
MS6S-60□□30B□3-20P4	98.4	121.15	Low
MS6S-60CN30B□3-20P4-S	88.7	115.5	inertia
MS6H-60□□30B□3-20P4	98.4	121.15	High
MS6H-60CN30B□3-20P4-S	80.2	106.95	inertia

■ 80 series motor installation dimensions Unit: mm

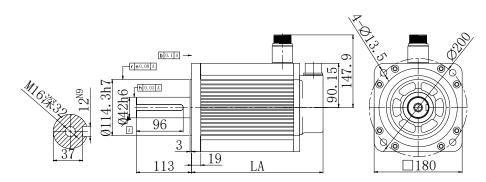


	LA	Inertia	
Motor model	Normal	With brake	level
MS6S-80□□30B□3-20P7	107.1	132.1	Low
MS6S-80CN30B□3-20P7-S	95	126.9	inertia
MS6H-80□□30B□3-20P7	107.1	132.1	High
MS6H-80CN30B□3-20P7-S	89.2	121.1	inertia
MS6S-80□□30B□3-21P0	117.6	142.6	Low inertia
MS6H-80□□30B□3-21P0	134	159	High
MS6H-80CN30B□3-21P0-S	112.5	144.4	inertia

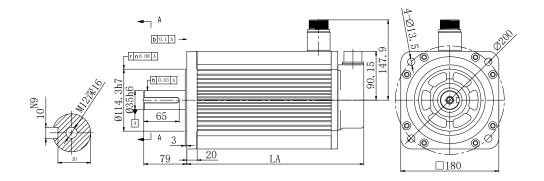
■ 130 series motor installation dimensions Unit: mm

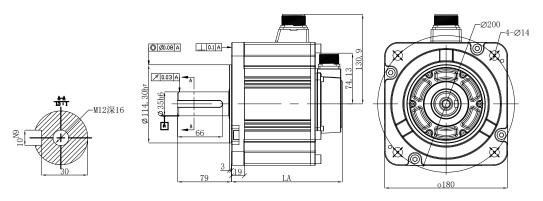


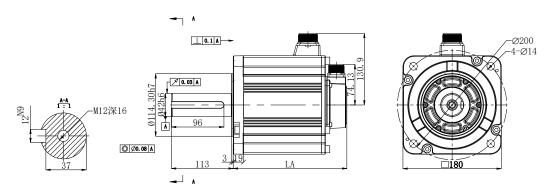
LA		±1	
Motor model	Normal	With brake	Inertia level
MS6G-130CN25B□2-□1P0	119.5	148.5	
MS6G-130CN20B□2-□1P5	133.5	162.5	
MS6G-130CN15B□2-□1P5	151.5	180.5)
MS6G-130CN15E□2-□2P3	181.5	210.5	
MS6G-130TH15B□2-□0P8	150	179	Medium inertia
MS6G-130TH25B□2-□1P0	136	165	Incrua
MS6G-130TH20B□2-□1P5	150	179	
MS6G-130TH15B□2-□1P5	168	197	
MS6G-130TH15E□2-□2P3	198	227	



Motor model	L	Inertia level	
Motor model	Normal	With brake	merna ievei
MS6G-130CN15B□2-□2P3	181.5	210.5	Medium
MS6G-130TH15B□2-□2P3	198	227	inertia


■ 180 series motor installation dimensions Unit: mm


	LA:		
Motor model	Normal	With brake	Inertia level
MS6H-180CN15B ₂ -43P0	215	255	High inputio
MS6H-180CN15B□2-44P4	247	287	High inertia


	LA:		
Motor model	Normal	With	Inertia level
	Normai	brake	
MS6H-180CN15B□2-45P5	269	309	III als in antia
MS6H-180CN15B□2-47P5	325	365	High inertia

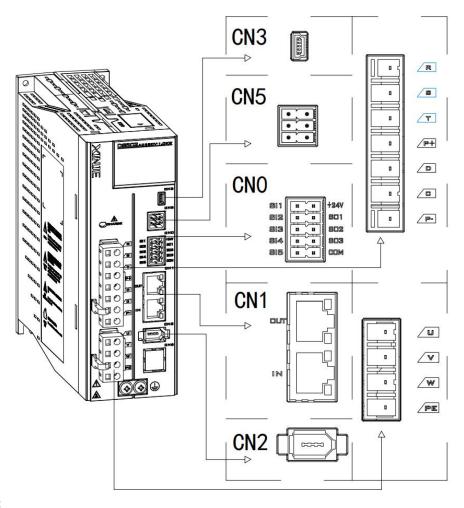
		LA±1	
Motor model	Normal	With brake	Inertia level
MS6H-180CN15E□2-45P5	269	309	High inputio
MS6H-180CN15E□2-47P5	325	365	High inertia

	LA±1		
Motor model	Normal	With brake	Inertia level
MS6G-180CN15B□2-43P0	162	206.5	
MS6G-180CN15B□2-44P4	185	229.5	Medium
MS6G-180TH15B□2-43P0	176.5	221	inertia
MS6G-180TH15B ₂ -44P4	199.5	244	

	LA±1		
Motor model	Normal	With brake	Inertia level
MS6G-180CN15B□2-45P5	208	252.5	Medium inertia
MS6G-180CN15B□2-47P5	256	300.5	
MS6G-180TH15B□2-45P5	222.5	267	
MS6G-180TH15B□2-47P5	270.5	315	

3 Servo system wiring

The recommended wiring for each interface of the servo drive is shown in the table below:


Driver model	Power supply wire-	UVW power	Ground cable	Encoder
	diameter mm ²	cable-diameter mm ²	-diameter mm ²	cable-dimeter mm ²
100W	2.0	0.3	0.3	0.2 (6 cores)
200~ 750W	2.0	0.5	0.5	0.2 (6 cores)
1 ~ 2.6kW	2.0	1.5	1.5	0.2 (6 cores)
3kW	2.0	2.0	2.0	0.2 (6 cores)
5.5~7.5kW	6.0	6.0	2.5	0.2 (6 cores)
15kW	6.0	6.0	2.5	0.2 (8 cores)

- Please do not pass the power cable and signal cable through the same pipeline, and do not tie them together. When wiring, please keep the power cable and signal cable at least 30cm apart.
- For signal cables and encoder (PG) feedback cables, please use multi stranded wires and multi-core twisted overall shielded wires.
- For the wiring length, the maximum length of the instruction input cable is 3m, and the maximum length of the PG feedback cable is 20m.
- Even if the power supply to the driver is disconnected and the panel displays OFF, the internal capacitance of the servo unit will still be stuck with high voltage. Please do not touch the power terminal temporarily (within 10 minutes).
- Do not frequently turn on or off the power supply of the driver. When it is necessary to repeatedly switch on and off the power supply continuously, it is necessary to ensure that the power switch frequency is greater than 2 minutes per time. The servo drive has a large capacitor inside, so when the power is turned on, the internal circuit of the drive will flow a large charging current (charging time of 0.2 seconds). Therefore, if the power supply is frequently switched on and off, it will cause a decrease in the performance of the main circuit components inside the servo drive, affecting the service life of the drive.

3.1 Main circuit terminal

3.1.1 Servo driver terminal layout

Each part name:

(1): CN3 RS232 port

(2): CN5 STO terminal

(3): CN0 I/O signal

(4): CN1 RJ45 port

(5): CN2 encoder port

(6): Power supply terminal

(7): Motor wiring terminal

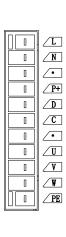
3.1.2 Main circuit terminals

■ DS5C2-20P1/20P4-PTA

According to the order from top to bottom, the main circuit terminal functions are as follows:

Terminal	Function	Explanation
L, N	Main circuit power input terminal	Single phase AC200~240V, 50/60Hz
•	Empty terminal	-
P+, C	Use external braking resistor	Connect the braking resistor to the P+ and C terminals; P0-25=power value, P0-26=resistance value
U, V, W, PE	Motor connection terminal	Connect to the motor

■ DS5C2-20P7-PTA


According to the order from top to bottom, the main circuit terminal functions are as follows:

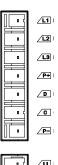
Terminal	Function	Explanation
L, N	Main circuit power input terminal	Single phase AC200~240V, 50/60Hz
•	Empty terminal	-
	Use built-in braking resistor	Short circuit P+ and D terminals, disconnect P+ and C.
P+, D, C	Use external braking resistor	Connect the braking resistor to the P+ and C terminals, and remove the P+ and D short circuits; P0-25=power value, P0-26=resistance value
•	Empty terminal	-
U, V, W, PE	Motor connection terminal	Connect to the motor

■ DS5C2-21P0/21P5/22P3/22P6-PTA

According to the order from top to bottom, the main circuit terminal functions are as follows:

Terminal	Function	Explanation
L1, L2, L3	Main circuit power input terminal	Single phase/three-phase AC200~240V, 50/60Hz (If single-phase power supply, please connect L1/L3, otherwise power failure will affect parameter memory)
P+, D, C	Use built-in braking resistor	Short circuit P+ and D terminals, disconnect P+ and C.
	Use external braking resistor	Connect the braking resistor to the P+ and C terminals, and remove the P+ and D short circuits; P0-25=power value, P0-26=resistance value
P+, P-	Bus terminal	Real time voltage of the busbar can be measured, please be aware of the danger
U, V, W, PE	Motor connection terminal	Connect to the motor
	Grounding terminal	The ground wire is on the heat sink. Please confirm good grounding before powering on

| P+ | C | U | V |


<u>|</u>

 $\angle L$

N •

 \sqrt{V}

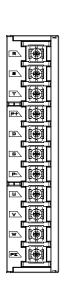
PE

■ DS5C2-41P0/41P5/42P3/43P0-PTA

According to the order from top to bottom, the main circuit terminal functions are as follows:

Terminal	Function	Explanation
R, S, T	Main circuit power input terminal	Three-phase AC380~440V, 50/60Hz
	Use built-in braking resistor	Short circuit P+ and D terminals, disconnect P+ and C.
P+, D, C	Use external braking resistor	Connect the braking resistor to the P+ and C terminals, and remove the P+ and D short circuits; P0-25=power value, P0-26=resistance value
P+, P-	Bus terminal	Real time voltage of the busbar can be measured, please be aware of the danger
U, V, W, PE	Motor connection terminal	Connect to the motor
	Grounding terminal	The ground wire is on the heat sink. Please confirm good grounding before powering on

■ DS5C2-45P5/47P5-PTA


According to the order from top to bottom, the main circuit terminal functions are as follows:

According to the order from top to bottom, the main circuit terminal functions are as		
Terminal	Function	Explanation
R, S, T	Main circuit power input terminal	Three-phase AC380~440V, 50/60Hz
P+, D, C Us	Use built-in braking resistor	Short circuit P+ and D terminals, disconnect P+ and C. (This model does not have built-in braking resistor)
	Use external braking resistor	Connect the braking resistor to the P+ and C terminals, and remove the P+ and D short circuits; P0-25=power value, P0-26=resistance value
P+, P-	Bus terminal	Real time voltage of the busbar can be measured, please be aware of the danger
U, V, W, PE	Motor connection terminal	Connect to the motor
\(\begin{array}{c} \\ \end{array}\)	Grounding terminal	The ground wire is on the heat sink. Please confirm good grounding before powering on

■ DS5C2-415P0-PTA

According to the order from top to bottom, the main circuit terminal functions are as follows:				
Terminal	Function	Explanation		
R, S, T	Main circuit power input terminal	Three-phase AC380~440V, 50/60Hz		
P+, PB	Use external braking	When using an external braking resistor, connect		
PT, PD	resistor	the braking resistor to the P+ and PB terminals		
P+, P-	Bus terminal	Real time voltage of the busbar can be measured, please be aware of the danger		
U, V, W	Motor connection terminal	Connect to the motor		
PE	Grounding terminal	Perform grounding treatment, please confirm good		

grounding before powering on

R

T P+ D C Pi

/U

V W PE

П

3.1.3 CN0, CN1, CN2, CN3 terminal description

3.1.3.1 CN0 control terminal

■ CN0 terminal explanation(750W and below, 3 in/3 out)

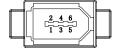
No.	Name	Note	No.	Name	Note
1	SI1	Input terminal 1(high speed)	5	SO1	Output terminal 1
2	SI2	Input terminal 2(high speed)	6	SO2	Output terminal 2
3	SI3	Input terminal 3	7	SO3	Output terminal 3
4	D+24V	Open collector input	8	COM	Output terminal (ground)

■ CN0 terminal explanation($1 \sim 7.5$ kW, 5 in/3 out)

er to terminar explanation (1 / 1.5 k v., 5 lif 5 out)					
No.	Name	Note	No.	Name	Note
1	SI1	Input terminal 1(high speed)	6	+24V	Input +24V
2	SI2	Input terminal 2(high speed)	7	SO1	Output terminal 1
3	SI3	Input terminal 3	8	SO2	Output terminal 2
4	SI4	Input terminal 4	9	SO3	Output terminal 3
5	SI5	Input terminal 5	10	COM	Output terminal ground

■ CN0 terminal explanation(15kW, 5 in/4 out)

No.	Name	Note	No.	Name	Note
1	P-	Pulse -	11	+24V	Input common terminal
2	P+5	Pulse +5v	12	SI1	Input terminal
3	P+24	Pulse +24v	13	SI2	Input terminal
4	D-	Direction -	14	SI3	Input terminal
5	D+5	Direction +5v	15	SI4	Input terminal (high speed)
6	D+24	Direction +24v	16	SI5	Input terminal (high speed)
7	SO1+	Output terminal +	17	SO1-	Output terminal -
8	SO2+	Output terminal +	18	SO2-	Output terminal -
9	SO3+	Output terminal +	19	SO3-	Output terminal -
10	SO4+	Output terminal +	20	SO4-	Output terminal -


3.1.3.2 CN1 communication terminal description

100~750W, 15kW	1kW~7.5kW	No.	Name	No.	Name
		1	TX A+	9	TX B+
		2	TX A-	10	TX B-
outlet	J outlet	3	RX A+	11	RX B+
	9	4	-	12	-
		5	-	13	-
inlet	inlet	6	RX A-	14	RX B-
		7	-	15	-
16	1 1	8	-	16	-

3.1.3.3 CN2 encoder interface description

■ 7.5kW and below

The arrangement of the encoder socket terminals on the side of the CN2 driver body is as follows:

No.	Definition		
1	5V		
2	GND		
5	A		
6	В		

■ 15kW

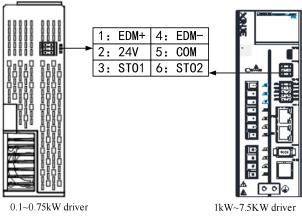
No.	Definition	No.	Definition
1	Temperature -	6	GND
2	Temperature +	7	GND
3	485-B	8	5V
4	485-A	9	5V
5	PE		

3.1.3.4 CN3 terminal (RS232)

Driver side-5-pin trapezoidal interface

No.	Name	Note
1	TXD	RS232 send
2	RXD	RS232 receive
3	GND	RS232 signal ground

Note: Please use the dedicated cable provided by XINJE company.


RS232 communication is full duplex communication, and the TXD (pin number 1) of the driver 232 communication port needs to be connected to the RX pin of USB to serial convertor. The RXD (pin number 2) of the port needs to be connected to the TX pin of USB to serial convertor.

RS232 port default communication parameters: baud rate 19200bps, data bit is 8-bit, stop bit is 1-bit, even parity. Suggest to use 115200 communication speed, internal hardware supports up to 250kHz, supports hot swapping. Modbus station No.

•	THE SHAROLITYON							
	Parameter	Function	Default setting	Range	Modify	Effective		
	P7-10	Modbus station no.	1	1~255	Servo OFF	At once		

3.1.3.5 CN5 terminal

The terminal arrangement of the CN5 port of the driver is as follows (facing the driver), with a safe torque shutdown STO, only supported on models with the suffix - FS:

STO terminal location

STO terminal location

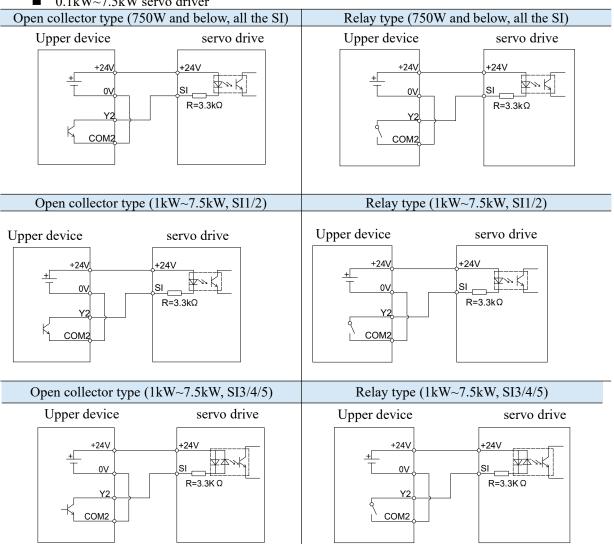
No.	Name	Explanation	No.	Name	Explanation
1	EDM+	EDM output +	4	EDM-	EDM output -
2	24V	24V output	5	COM	Common ground
3	STO1	STO1 circuit input	6	STO2	STO2 circuit input

In order to make the debugging process more user-friendly, the power supply voltage (2: 24V) pin has been added. If the STO function is not required, please connect the STO1 and STO2 terminals to the 24V terminal.

The maximum allowed cable length between the driver and the safety switch is 30m.

3.2 Signal terminal

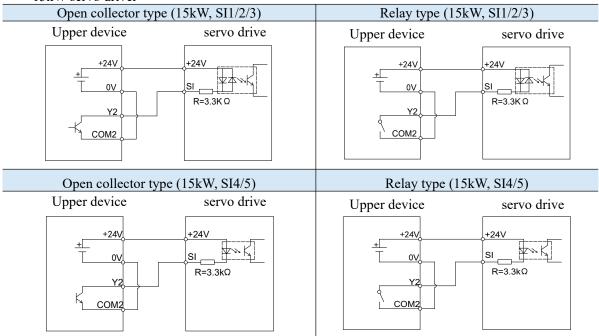
3.2.1 SI input signal


Please use a relay or an open collector transistor circuit to connect. When using relay connection, please select the relay for small current. If the relay is not small current, it will cause bad contact.

Type	Input terminal	Function
Digital input	SI1~SI5	Multifunctional input signal terminal

Defaulted assignment of input terminals

-	Terminal	SI1	SI2	SI3	SI4	SI5
]	Function	P-OT/forward run prohibition	N-OT/reverse run prohibition	Home signal	Not distributed	Not distributed

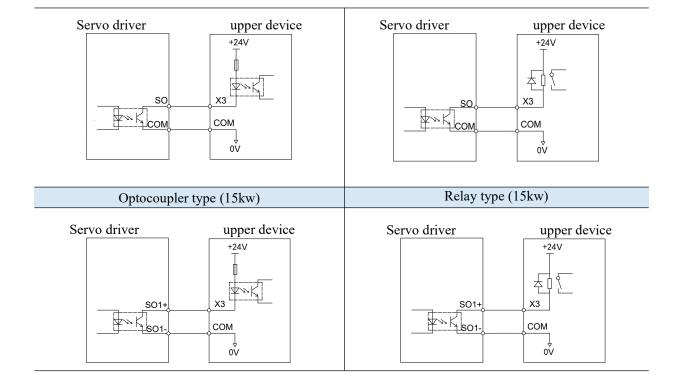


- SI1 and SI2 of 750W and below drivers are high-speed SI inputs, SI3 is low-speed, and only supports NPN connection;
- The SI1 and SI2 channels of the 1~7.5kW driver are high-speed SI inputs with a response speed of less than or equal to 2μs, and only support NPN connection; SI3, SI4, and SI5 are low-speed SI inputs with a response time of less than or equal to 2ms. They support both NPN and PNP connections (SI1 to SI5 can only be NPN or PNP at the same time);

• Typical voltage DC24V, minimum not lower than DC18V, maximum allowable voltage not higher than DC28V.

■ 15kW servo driver

- A 15kW driver with three low-speed SI inputs of SI1, SI2, and SI3, with a response time of less than or equal to 2ms, supporting NPN and PNP connections; SI4 and SI5 are high-speed SI inputs with a response speed of less than or equal to 2μs, and only support NPN connection;
- Typical voltage DC24V, minimum not lower than DC18V, maximum allowable voltage not higher than DC28V.


3.2.2 SO output signal

Туре	Output terminal	Function
Optocoupler output	SO1~SO3	Multifunctional output terminal

Defaulted assignment of output terminals

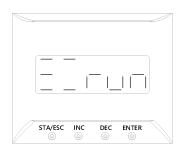
Terminal	SO1	SO2	SO3	SO4 (15kW)
Function	COIN/positioning completion	ALM/alarm	Not distribute	Not distribute

Optocoupler type (7.5kw and below)	Relay type (7.5kw and below)

- SO1, SO2, and SO3 of 7.5kW and below driver only support NPN connection;
- 15kW drive SO1, SO2, SO3, SO4 with + and markings, SO1-, SO2-, SO3-, SO4- can be connected together when using a common COM;
- Maximum load current:

400W and below:

SO1 DC 500mA (maximum), SO (other) DC 50mA (maximum), the current required by the brake is relatively high. When directly controlling the brake motor through SO, please use the SO1 terminal control and set the holding parameter P5-44=n.0001;

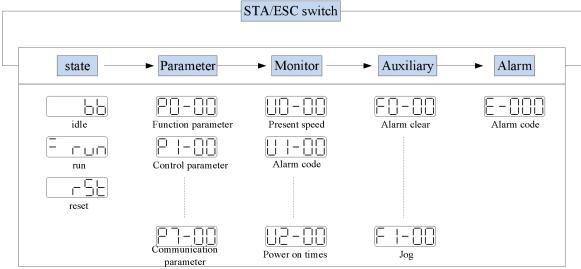

750W and above:

SO (all) DC 50mA (maximum), supporting 24VDC, with a maximum of 30VDC. The required current for the brake is relatively high. When controlling the brake motor through SO, please use an intermediate relay.

4 Panel operation

4.1 Basic operation

4.1.1 Operating panel description


Button	Operation
STA/ESC	Short press: state switch, state return
INC	Short Press: The display data increases Long press: The display data increases continuously
DEC	Short Press: The display data decreases Long press: The display data decreases continuously
ENTER	Short press: shift. Long press: Set and view parameters.

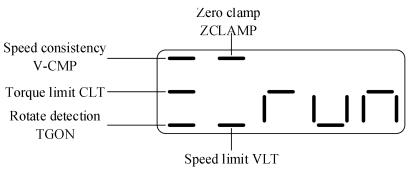
Note: The panel will be self-checked, and all the display digital tubes and five decimal points will be lit for one second at the same time.

4.1.2 Button operation

By switching the basic state of the panel operator, it can display the running state, set parameters, run auxiliary functions and alarm state. After pressing the STA/ESC key, the states are switched in the order shown in the following figure.

State: BB indicates that the servo system is idle; run indicates that the servo system is running; RST indicates that the servo system needs to be re-energized.

- Parametric setting PX-XX: The first X represents the group number, and the last two X represents the parameter serial number under the group.
- ♦ Monitor status UX-XX: The first X represents the group number, and the last two X represents the parameter number under the group.
- ◆ Auxiliary function FX-XX: The first X represents the group number, and the last two X represents the parameter number under the group.

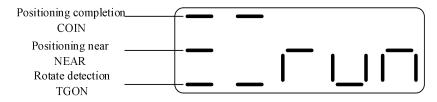

lack Alarm state E-XX \Box : The first two X represents the alarm category, and the last \Box represents the small category under the category.

4.2 Operation state display

When powered on, the panel displays, which is set according to P8-25 parameters.

Parameter	Name	Default setting	Suitable mode	Meaning	Modify	Effective
P8-25	Panel display settings	0	All	0: normal display, power on display "bb" or "run" 1: display the value of U-00 when powering on, speed feedback, unit:rpm 2: display the value of U0-07 when powering on, torque feedback, unit:%	At once	Repower on

■ Speed, torque control mode


Digit display contents

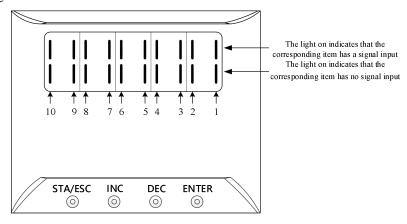
Digit data	Display contents
P5-39	When the actual speed of the motor is the same as the command speed,
Same speed	turn on the light.
detection(/V-CMP)	Detection Width of Same Speed Signal: P5-04 (Unit: rpm)
	Speed control mode, when the torque exceeds the set value, turn on the
P5-42	light.
Torque limit(/CLT)	Internal Forward Torque Limitation: P3-28
	Internal Reverse Torque Limitation of: P3-29
P5-40	When the motor speed is higher than the rotating speed, turn on the lamp.
Rotate detection(/TGON)	Rotation detection speed: P5-03 (unit: rpm)
P5-31	When the zone elemn signal starts to angusts trum on the light
Zero clamp(/ZCLAMP)	When the zero clamp signal starts to operate, turn on the light.
	Torque control mode
P5-43	When the speed exceeds the set value, turn on the light
Speed limit(/VLT)	Forward speed limit in torque control: P3-16;
	Reverse speed limit: P3-17.

Simplified code display content

Simplified code	Display content
	In standby mode
	Servo OFF status. (The motor is in a non energized state)
	Running
	Servo enable status. (Motor in energized state)
	Need to reset status
	The servo needs to be re-powered on
	Prohibit forward drive state
	P-OT ON status.
	Prohibit reverse drive state
	N-OT ON status.
	Control mode 2 is empty

■ Position control mode

Digit display contents

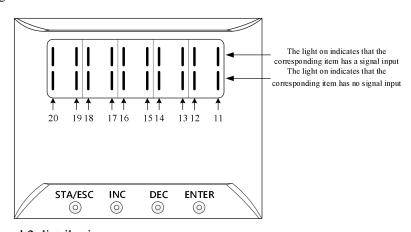

Digit data	Display contents			
P5-38	In position control, when the given position is the same as the actual			
Positioning	position, turn on the light.			
completion(/COIN)	Location Completion Width: P5-00 (Unit: Instruction Pulse)			
P5-46 Near (/NEAR)	In position control, when the given position is the same as the actual position, turn on the light. Near signal width: P5-06			
P5-40 Rotate detection(/TGON)	When the motor speed is higher than the rotating speed, turn on the lamp. Rotation detection speed: P5-03 (unit: rpm)			

Simplified code display content

Simplified code display co	ment
Simplified code	Display content
	In standby mode
	Servo OFF status. (The motor is in a non energized state)
	Running
	Servo enable status. (Motor in energized state)
	Need to reset status
	The servo needs to be re-powered on
	Prohibit forward drive state
<u> </u>	P-OT ON status.
	Prohibit reverse drive state
	N-OT ON status.
	Control mode 2 is empty

4.3 Group U monitor parameter

■ U0-21 input signal status

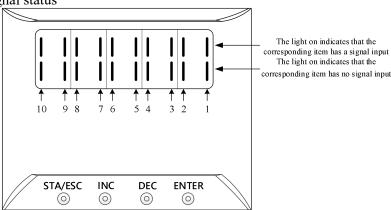


■ U0-21 input signal 1 distribution

Segment code	Description	Segment code	Description
1	/S-ON servo enable	2	/P-CON proportion action instruction
3	/P-OT prohibition of forward drive	4	/N-OT prohibition of reverse drive
5	/ALM-RST alarm reset	6	/P-CL forward side external torque limit
7	/N-CL reverse side external torque limit	8	/SPD-D internal speed direction selection
9	/SPD-A internal speed selection	10	/SPD-B internal speed selection

Note: When reading through communication, the binary numbers read from right to left correspond to the position of /S-ON, /P-CON, 0 means that the position signal is not input, 1 means that the position signal has input. Example: 0x0001 means /S-ON has input, 0x0201 means /S-ON and /SPD-B has input.

■ U0-22 input signal status

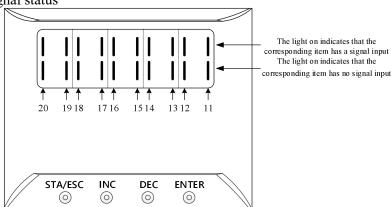

■ U0-22 input signal 2 distribution

Segment code	Description	Segment code	Description
11	/C-SEL control mode selection	12	/ZCLAMP zero clamp
13	/INHIBIT instruction pulse prohibition	14	/G-SEL gain switch
15	/CLR pulse clear	16	/CHGSTPchange step
17		18	
19	<u> </u>	20	

Note: When reading through communication, the binary numbers read from right to left correspond to the position of /C-SEL, /ZCLAMP, 0 means that the position signal is not input, 1 means that the position signal has input. Example: 0x0001 means /C-SEL has input, 0x0009 means /C-SEL and / G-SEL have input.

Note:"-" is for reserved display and does not represent any signal. The status bit is always 0.

■ U0-23 output signal status



■ U0-23 output signal 1 distribution

Segment		Segment	
code	Description	code	Description
1	Positioning completion hold(/COIN_HD)	2	Position completion(/COIN)
3	Same speed detection(/V-CMP)	4	Rotate detection(/TGON)
5	Ready (/S-RDY)	6	Torque limit(/CLT)
7	Speed limit detection(/VLT)	8	Break lock(/BK)
9	Warn (/WARN)	10	Output near(/NEAR)

Note: when reading status through communication, the binary from right to left correspond to the position of /COIN_HD, /COIN. 0 means that the position signal is not output, 1 means that the position signal has output. Example: 0x0001 means / COIN HD has output, 0x0201 means /COIN HD and / NEAR has output.

■ U0-24 output signal status

■ U0-24 output signal 2 distribution

Segment code	Description	Segment code	Description
11	Alarm (/ALM)	12	Speed arrived (/V-RDY)
13	Customized output 1	14	Customized output 2
15	/Z phase	16	/MRUN
17	_	18	_
19		20	_

Note: When reading the status through communication, the binary numbers read correspond to the /ALM and /V-RDY positions from right to left. 0 represents that the position signal has no input, and 1 represents that the position signal has input. Example: 0x0001 indicates that/ALM has an output, and 0x0011 indicates that/ALM and /Z have an output.

Note:"-" is for reserved display and does not represent any signal. The status bit is always 0.

■ U0-88 Motor code reading status

U0-88 display status	Meaning
	0001— Reading encoder motor parameters successful, but P0-33=0, use the motor parameters from the reading encoder.
	0011—— Successfully read encoder motor parameters, P0-33 ≠ 0, use motor parameters from the driver.
	0021— The encoder motor parameters were successfully read, but the parameter value was 0. Please use after setting P0-53 to 1.
	0031— The encoder motor parameters were successfully read, but were damaged (CRC verification error). Set P0-53=1 before use.
	0042— Reading encoder motor parameters failed, set P0-53 to 1 before use.

■ U4-18 Input signal status

SI1	SI2	SI3	U4-18 display
1	0	0	0x0001
0	1	0	0x0002
1	1	0	0x0003
0	0	1	0x0004

Note: U4-18 displays the state of SI terminal, Only after the function of corresponding terminal is set, the input high level of this terminal will be displayed on U4-18.

For example, SI1 has no function allocation, and even if SI1 is set to high level, the 0th bit of U4-18 will not display 1.

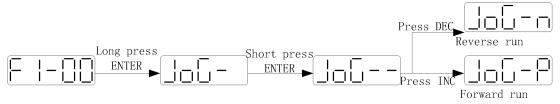
■ U4-19 Output signal status

SO1	SO2	SO3	U4-19 display
1	0	0	0x0001
0	1	0	0x0002
1	1	0	0x0003
0	0	1	0x0004

Note: U4-19 displays the state of SO terminal, display as the bit.

4.4 Group F auxiliary parameters

4.4.1 F0-XX

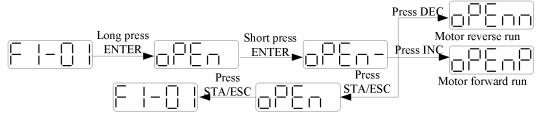

Function		Function	
code	Explanation	code	Explanation
			Panel external command auto
F0-00	Clear the alarm	F0-08	tuning
	Restore parameters to factory		Panel internal command auto
F0-01	settings	F0-09	tuning
F0-02	Clear position deviation	F0-10	Panel vibration suppression 1
F0-04	Clear historical alarm records	F0-11	Panel vibration suppression 2
			Panel vibration suppression (fast
F0-07	Panel inertia identification	F0-12	FFT)

4.4.2 F1-XX

Code	Note
F1-00	Jog run
F1-01	Test run
F1-02	Current sampling zero-correction
F1-05	Software enable
F1-06	Reset turns of absolute encoder

1. Jog run(F1-00)

Before entering jog mode, please confirm that the motor shaft is not connected to the machine and the driver is in bb idle status! The jog function is in speed mode, and P3-09 and P3-10 control the acceleration and deceleration time!



P3-18	JOG speed					
	Unit	Default	Range	Suitable	Modify	Effective
				mode		
	1rpm	100	0~1000	JOG	Servo	At once
					OFF	

2. Test run(F1-01)

Before entering the test run mode, please confirm that the motor shaft is not connected to the machine! When the servo driver is connected to the non-original encoder or power cable, it should first enter the test run mode to verify that the encoder terminal or power terminal is connected correctly.

Test run mainly checks the power cable and the encoder cable to determine whether the connection is normal. According to the following operation, the motor can normally achieve forward and reverse rotation. If the motor shaft shakes or driver alarms, please immediately disconnect the power supply, and re-check the wiring situation.

3. Current sampling zero-correction(F1-02)

When the servo driver is updated or the motor runs unsteadily after a long time, it is recommended that the user automatically adjust the current detection offset, and carry out the following operations when the driver is bb idle.

Press STATUS/ESC to exit.It needs to repower on the driver.

4. Forced enable(F1-05)

Parameter	Signal name	Setting	Meaning	Modify	Effective
P0-03	Enable	0	disable	Servo OFF	At once
	mode	1	I/O enable/S-ON		
		2	Software enable(F1-05 or		
			communication)		
		3(default)	Bus enable(Models supporting bus)		
Set P0-03=2					

F1-05 = 0: cancel enable, enter bb status.

F1-05 = 1: forced enable, servo is in RUN status.

Note:

After power on again, the forced enable set by F1-05 will fail.

5. Reset turns of absolute encoder(F1-06)

First turn the servo OFF, and then clear the number of turns of the absolute encoder. The operation is as follows: Write 1 to F1-06 through panel operation to clear the number of turns of absolute encoder.

Writing 3 to F1-06 through panel operation can perform zero calibration on the absolute value encoder.

4.5 Fault alarm operation

When a fault occurs, the alarm status will automatically pop up, displaying the alarm number. If there is no fault, the alarm status will not be visible. In the alarm state, writing 1 to F0-00 through panel operation can reset the fault.

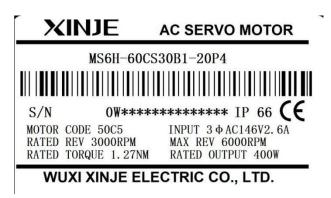
If the servo alarm is casued by power supply turning off, there is no need to clear the alarm.

Note: When an alarm occurs, the cause of the alarm should be eliminated first, and then the alarm should be released.

4.6 Parameter example

Provide an example of the operation steps for changing the content of parameter P3-09 from 2000 to 3000.

Step	Panel display	Buttons	Operation
1		STA/ESC INC DEC © © © ENTER	No need any operations
2		STA/ESC INC DEC © © © © ENTER	Press STA/ESC to enter parameter setting
3		STA/ESC INC DEC © © © © ENTER	Press INC, press once to add 1, increase the parameter to 3, and display P3-00
4		STA/ESC INC DEC © © © © ENTER	Short press the ENT key, and the last 0 on the panel will flash


5	**************************************	STA/ESC INC DEC ENTER	Press the INC key to add up to 9
6	100 100	STA/ESC INC DEC © © © © Enter	Long press the ENT key to enter P3-09 for numerical changes.
7		STA/ESC INC DEC © © © Enter	Press the INC, DEC, and ENT keys to add, subtract, and shift. After making the changes, press and hold the ENT key to confirm
8		END © © ©	©

When the set parameters exceed the range that can be set, the driver will not accept the set value and will report E-021 (parameter setting exceeded). Parameter setting exceeding the limit usually occurs when the upper computer writes parameters to the driver through communication.

4.7 Check the motor code

A servo driver can be matched with multiple motors with similar power levels, and different models of motors are distinguished by the motor code on the motor nameplate. Before debugging the servo system, please make sure to confirm whether the motor code U3-70 matches the motor nameplate label.

5 Basic functions

5.1 Absolute value system

5.1.1 Absolute system setting

In order to save the position data of absolute encoder, the battery unit needs to be installed.

Install the battery on the battery unit of the encoder cable with the battery unit.

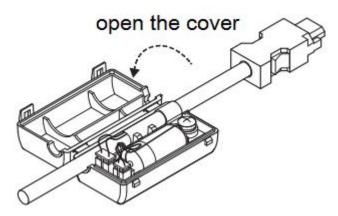
If you do not use encoder cable with battery unit, please set P0-79 to 1, that is, multi-loop absolute value encoder is used as incremental encoder.

Parameter	Name	Setting	Meaning	Range
			Normally use absolute encoder and use battery to memorize position.	
P0-79	Absolute encoder battery	1(default)	As incremental encoder, no longer memorize the position of multiple turns	0~2
10-/9	undervoltage alarm switch	2	Use as absolute encoder, but ignores the multi turn overflow alarm. Enable the recording of the number of turns and the number of times of overflow, and power down memory (3770 version and above)	0~2

Note: when the E-222 alarm occurs after replacing the multi turn motor, the overflow times of the multi turn number will be automatically cleared, otherwise serious position deviation will occur, causing danger.

5.1.2 Replace the battery

When replacing the battery, please replace the battery while keeping the driver and motor connected well and the control power is connected. If the battery is replaced when the control power between the driver and the motor is closed, the data stored in the encoder will be lost.

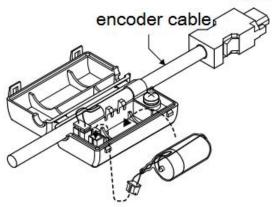

Note: Absolute Encoder Battery Model (This Battery can't Charge)

Battery unit for normal cable: CP-B-BATT Battery unit for tank chain cable: CPT-B-BATT

Battery replacement steps

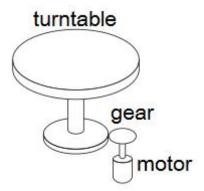
When using encoder cable with battery unit

- (1) Only the control power of the servo unit is connected;
- (2) Open the cover of the battery cell;


(3) Take out the old battery, install the new one.

servo driver side

(4) Close the cover of the battery unit


- (5) After replacing the battery, in order to remove the "Encoder Battery Alarm (E-222)" display, please do clear alarm twice (F0-00=1). (3770 version and above only need to be cleared once.)
- (6) Connect the power supply of the servo unit again;
- (7) Make sure the error display disappears and the servo unit can operate normally.

5.1.3 The upper limit of turns

The upper limit of rotating cycles can be used for position control of gyroscopes such as turntables.

For example, suppose there is a machine whose turntable moves only in one direction, as shown in a

For example, suppose there is a machine whose turntable moves only in one direction, as shown in the figure below.

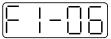
Because it can only rotate in one direction, after a certain period of time, the number of revolving cycles will always exceed the upper limit of absolute value encoder.

Servo motor series	Resolution (single-turn data)	Rotating Circle Serial Data Output range	Operation of overtime
CN	19	-32768~32767	When exceeding the upper limit value of forward rotation direction (+32767 * 2 ¹⁹): Rotation serial data=32767 * 2 ¹⁹ When below the lower limit of the reverse direction (-32768 * 2 ¹⁹): Rotation serial data=-32768 * 2 ¹⁹

5.1.4 Absolute encoder position calibration

Parameter	Name
F1-06	Set to 1: Absolute value encoder clears multi turn positions Set to 3: Absolute encoder zero calibration
U0-94	
U0-95	Relative encoder feedback value which can be
U0-96	cleared
U0-97	

5.1.4.1 Reset multi-turn absolute position


Encoder turns clearing should be done when servo driver is bb status. The clearing methods include servo panel clearing and Ethercat communication clearing. Write 1 to F1-06, the current number of turns U0-91 of the multi turn absolute value will be set to 0, and the current position feedback U0-57 \sim U0-59 of the absolute value encoder will also change.

1. Servo panel clearing

Enter parameter F1-06 when servo is in bb state:

Press [INC] to 1, and keep press [ENT] to confirm and exit:

Clear the absolute encoder turns through F1-06 on the servo panel.

2. EtherCAT communication clearing

Method 1: In the servo bb state, write 1 to # 0x4106 through EtherCAT bus communication to clear the number of turns.

Method 2: Via EC_ SDO instruction

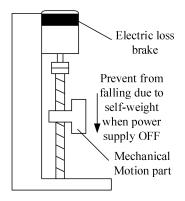
Write 1 to D0 to clear the number of turns.

5.1.4.2 Zero calibration of absolute encoder

The zero calibration of the absolute value encoder needs to be completed in the servo bb state and can only be calibrated through the servo panel. F1-06 write 3, the current position feedback of the absolute value encoder U0-94~97 will calibrate the encoder position to 0 (note: absolute value encoder zero calibration through SDO communication is not supported).

1. Calibrate through the servo panel

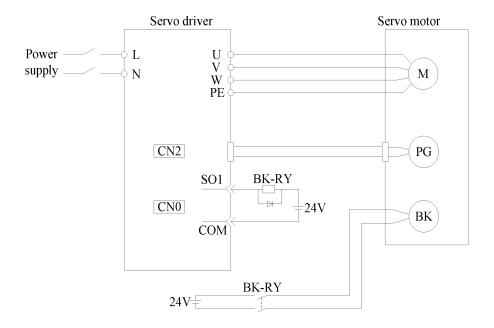
Enter F1-06 when servo is in bb status


Press [INC] to 3 and long press [ENT] to confirm and exit.

Calibrate the encoder current position as zero position through servo panel F1-06 parameter, U0-94~97 will show the encoder position after calibration.

5.2 Power-off brake

When the servo motor controls the vertical load, the purpose of using the "brake servo motor" is: when the power supply of the system is placed in the "OFF", the movable part will not move under the action of gravity.


Note: The brake built in the servo motor is a fixed special brake without excitation. It can not be used for dynamic braking. Please use it only when the servo motor is in a stop state.

Related parameter

Parameter	Meaning	Default setting	Unit	Setting range	Modify	Effective
P5-44	Brake interlock /BK	n.0000	-	0~ffff	Servo bb	At once
P5-07	Servo OFF delay time	500	1ms	-500~9999	Servo bb	At once
P5-08	Brake command output speed	30	rpm	20~10000	Servo bb	At once
P5-09	Brake command waiting time	500	ms	0~65535	Servo bb	At once

1. Hardware wiring

The ON/OFF circuit of the brake is composed of the sequential output signal of the servo unit "/BK" and "brake power supply". A typical connection example is shown below.

Note:

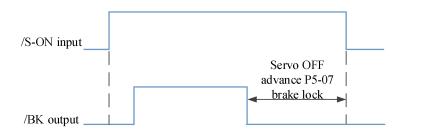
- 1) The excitation voltage of the power-off brake is 24V.
- 2 If the holding brake current is more than 50mA, please transfer it through the relay to prevent terminal burnt out due to excessive current.

2. Software parameter settings

For the servo motor with holding brake, it is necessary to configure one SO terminal of servo driver as holding brake output /BK function, and determine the effective logic of SO terminal, that is, parameter P5-44 needs to be set.

Parameter setting	Servo status	Signal/BK terminal output logic	Servo motor status	
D5 44 000	Servo bb	Invalid	Brake power off, motor in position locked state	
P5-44=n.000□	Servo run	Valid	Brake power on, motor in rotatable state	
D5 44 001	Servo run	Invalid	Brake power off, motor in position locked state	
P5-44=n.001□	Servo bb	Valid	Brake power on, motor in rotatable state	

Note:

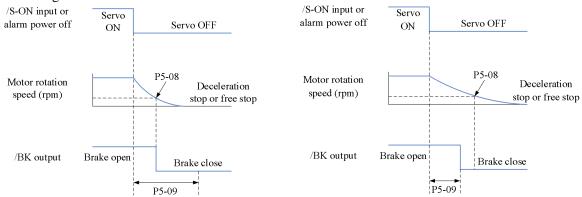

- (1) When SO terminal is used to control holding brake, when servo enable is on, holding brake power is on and motor is in rotatable state;
- (2) If the motor fails to rotate during the debugging of the new machine, please confirm whether the holding brake is open.

3. Time sequence of holding brake control

(1) Normal state holding brake timing

Due to the delay time of the brake action, the machinery undergoes slight movement under the influence of gravity, etc. The P5-07 parameter is used to adjust the time to make the brake lag open or close in advance.

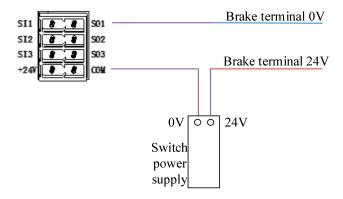
When using a servo motor with a brake, the output signal "/BK" of the control brake and the ON/OFF action time of the servo SON signal are shown in the following figure. Before the output/BK signal holding brake is opened, the servo motor has entered the energized enable state; The servo motor is only turned off when the brake is locked without outputting the/BK signal.


The setting made here is the time when the rotation detection TGON is invalid when the motor is stopped.

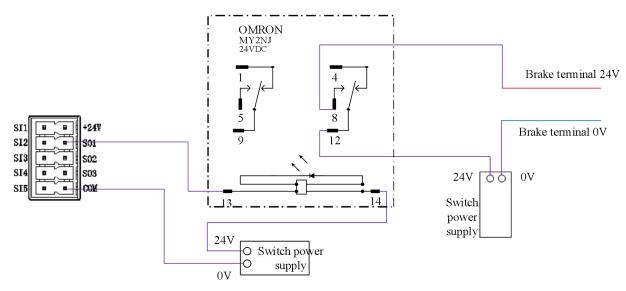
(2) Abnormal state holding brake timing

When an alarm/power interruption occurs, the motor quickly becomes non energized. Due to gravity or inertia, the machinery will move during the time until the brake is activated. To avoid this situation, the conditions for the/BK signal during motor rotation to change from ON to OFF are as follows (any of the two conditions takes effect):

- When the servo is turned off and the motor speed is below the set value of P5-08;
- (2) When the servo is turned off and exceeds the set time of P5-09.


The timing chart is as follows:

As the brake of the servo motor is designed for position retention, it must be activated at the appropriate time when the motor stops. While observing the mechanical movements, adjust the user parameters.


4. Brake connection

When the drive power is 400W and below, it can be directly connected through SO terminal, as shown in the figure below., and set P5-44=0001.

When controlling the holding brake motor through SO for 400W and below, please use the SO1 terminal control and set the holding brake parameter P5-44=n.0001 to prevent the terminal from being burnt out due to excessive current or the brake from being worn out due to inability to open.

When the power of the driver is 750W and above, it needs to be connected through the intermediate relay. The connection method is as follows. Set parameter P5-44=0001.

For motors with a current of 750W or above, if the holding brake current is greater than 50mA, please use a relay to prevent the terminal from being burned due to excessive current, or the holding brake from being worn out due to inability to open.

Note: it is recommended that SO terminal and intermediate relay do not share the same switching power supply.

- 5. When the holding brake slightly drops after power failure, the following solutions can be adopted:
- 1 Appropriately reduce p5-07
- 2 Directly set p0-69.2 to 1

5.3 Stop mode

Servo shutdown can be divided into free shutdown, deceleration shutdown, and dynamic braking (DB) shutdown according to the shutdown methods. The following is an explanation of the servo shutdown methods.

Stop mode	Free shutdown	Decelerating shutdown	DB shutdown	
Shutdown principle	The servo drive is not enabled, the servo motor is not powered on, and it can freely decelerate to 0. The deceleration time is affected by mechanical inertia, equipment friction, and other factors.	The servo driver outputs reverse braking torque, and the motor quickly decelerates to 0.	The servo motor operates in a short-circuit braking state.	
Shutdown characteristics	Advantages: Smooth deceleration, low mechanical impact, but slow deceleration process, smooth deceleration, low mechanical impact Disadvantage: Slow deceleration process	Advantages: Short deceleration time Disadvantage: There is mechanical impact	Advantages: Short deceleration time Disadvantage: There is mechanical impact	

According to the different scenarios of servo shutdown, it can be divided into servo OFF shutdown, alarm shutdown, and overtravel shutdown.

Currently, only the 0.1kW~7.5kW models of DS5C2 support dynamic braking (DB) function.

5.3.1 Servo OFF and alarm shutdown

Related parameters

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P0-30	Stop timeout time	20000	1ms	0~65535	Servo bb	At once
P0-27	Servo turn off enable shutdown mode	0	-	0~5	Servo bb	At once
P0-29	Alarm shutdown mode	2	-	0~5	Servo bb	At once

Parameter	Value	Meaning
	0	Free running stops and remains in a free running state after stopping.
	1	Free running stops and maintains DB status after stopping.
	2	Deceleration braking stops, and after stopping, it remains in a free
P0-27		running state.
	3	Deceleration braking stops and maintains DB status after stopping.
	4	DB stops and remains in a free running state after stopping.
	5	DB stops and remains in DB state after stopping.
		Turn off enable property alarm
	0	Free running stops and remains in a free running state after stopping.
	1	Free running stops and maintains DB status after stopping.
	2	DB stops and remains in a free running state after stopping.
	3	DB stops and remains in DB state after stopping.
	4	DB stops and remains in a free running state after stopping.
	5	DB stops and remains in DB state after stopping.
P0-29		Not turn off enable property alarm
	0	Free running stops and remains in a free running state after stopping.
	1	Free running stops and maintains DB status after stopping.
	2	Deceleration braking stops, and after stopping, it remains in a free running state.
	3	Deceleration braking stops and maintains DB status after stopping.
	4	DB stops and remains in a free running state after stopping.
	5	DB stops and remains in DB state after stopping.

Note:

- 1. servo turn off enable shutdown mode (P0-27)
- (1) When P0-27=0, if the servo OFF occurs, the motor starts to rely on free stop without any alarm.
- 2 When P0-27=1, if the servo OFF occurs, the motor starts to rely on free stop and maintains the DB state after stopping.
- ③ When P0-27=2, if the servo OFF occurs, the motor starts to rely on deceleration to stop, until the speed is less than 50rpm before turning to free stop. At the same time, the servo will time the deceleration stop stage. If the timing time has exceeded P0-30 and the motor speed has not dropped below 50rpm during the deceleration process, an alarm E-262 will show.
- 4 When P0-27=3, if the servo OFF occurs, the motor starts to rely on deceleration to stop, until the speed is less than 50rpm before turning to free stop. At the same time, the servo will time the deceleration stop stage. If the timing time has exceeded P0-30 and the motor speed has not dropped below 50rpm during the deceleration process, an alarm E-262 will show. Maintain DB status after stopping.
- (5) When P0-27=4, if the servo OFF occurs, the motor DB stops and remains in a free running state after stopping.
- (6) When P0-27=5, if servo OFF occurs, the motor DB stops and maintains the DB state after stopping.
- 1. Servo alarm shutdown mode (P0-29)
 - (1) Turn off enable property alarm

When P0-29=0, if a servo alarm occurs, the motor starts to rely on free stop.

When P0-29=1, if a servo alarm occurs, the motor starts to rely on free stop and remains in DB state after stopping.

When P0-29=2, if a servo alarm occurs, the motor DB stops and remains in a free running state after stopping.

When P0-29=3, if a servo alarm occurs, the motor DB stops and maintains the DB state after stopping.

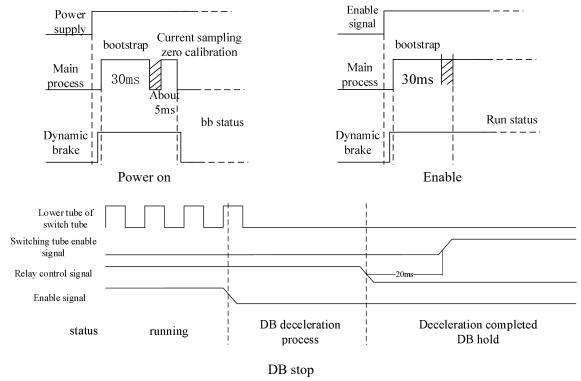
When P0-29=4, the motor DB stops and remains in a free running state after stopping.

When P0-29=5, if a servo alarm occurs, the motor DB stops and maintains the DB state after stopping.

(2) Not turn off enable property alarm

When P0-29=0, if a servo alarm occurs, the motor starts to stop freely.

When P0-29=1, if a servo alarm occurs, the motor starts to stop freely and remains in DB state after stopping.

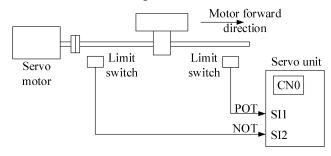

When P0-29=2, if a servo alarm occurs, the motor starts to rely on deceleration to stop, until the speed is less than 50rpm before turning to a free stop. At the same time, the servo will time the deceleration stop stage. If the timing time exceeds P0-30 during the deceleration process, the servo will directly stop freely. At this time, due to the servo being in an alarm state, regardless of the value of P0-29, there will be no alarm E-262. Maintain free running status after stopping.

When P0-29=3, if a servo alarm occurs, the motor starts to rely on deceleration to stop, until the speed is less than 50rpm before turning to a free stop. At the same time, the servo will time the deceleration stop stage. If the timing time exceeds P0-30 during the deceleration process, the servo will directly stop freely. At this time, due to the servo being in an alarm state, regardless of the value of P0-29, there will be no alarm E-262. Maintain DB status after stopping.

When P0-29=4, if a servo alarm occurs, the motor DB stops and remains in a free running state after stopping. When P0-29=5, if a servo alarm occurs, the motor DB stops and maintains the DB state after stopping.

(3) The servo drive SO terminal has been assigned a holding brake function, and the values set in P0-27/P0-29 are invalid. They all stop in a deceleration manner.

Dynamic braking (DB) timing diagram (dynamic braking low-level indicates effective).


5.3.2 Stop mode when overtravel in normal mode

The overtravel prevention function of servo unit refers to the safety function that the servo motor is forced to stop by inputting the signal of limit switch when the movable part of the machine exceeds the designed safe moving range.

Related parameter

parameter	Meaning	Default setting	Unit	Setting range	Modify	Effective
P0-28	Servo override stop mode	2	1	0~3	Servo bb	At once
P0-30	Stop timeout	20000	1ms	0~65535	Servo bb	At once
P5-22	Forward run prohibition /P-OT	n.0001	-	0~ff	Anytime	At once
P5-23	Reverse run prohibition /N-OT	n.0002	-	0~ff	Anytime	At once

Be sure to connect the limit switch as shown in the figure below.

Rotary applications such as round tables and conveyors do not need the function of overrun prevention. At this time, there is no need to connect the overrun prevention with input signals.

Parameter setting	Signal /POT, terminal input	Overtravel signal (/POT, /NOT) terminal
1 drameter setting	status	logic
P5-22/P5-23=n.0000	No need to connect	
1 3-22/1 3-23-11.0000	external input	
P5-22/P5-23=n.000□	SI	invalid
F 3-22/F 3-23-II.000	input	ilivalid
P5-22/P5-23=n.001□	SI	
P3-22/P3-23-II.001	input	
D5 22/D5 22 0010	No need to connect	
P5-22/P5-23=n.0010	external input	
P5-22/P5-23=n.000□	SI□ terminal has signal	valid
P3-22/P3-23-II.000	input	vand
D5 22/D5 22 001-	SI□ terminal has no signal	
P5-22/P5-23=n.001□	input	

Parameter settings in forward limit signal /POT and reverse limit signal /NOT can not be set to the same terminal input at the same time.

Direction	Meet the limit	Operation status
Forward	positive limit is valid	POT, set the servo overrun stop mode as P0-28
run	negative limit is valid	Alarm E-261
Reverse	positive limit is valid	Alarm E-261
run	negative limit is valid	NOT, set the servo overrun stop mode as P0-28

Parameter	Value	Meaning
	0	The deceleration stops 1, the overrun direction moment is 0 after
P0-28	0	stopping, and receiving instructions.
PU-28	1	Inertia stops, after stopping, overrun direction moment is 0,
	1	receiving instructions.

2	The deceleration stops 2, after stopping, the overrun direction does not receive instructions.
3	Alarm (E-260)

Note:

- (1) When P0-28 = 0/2, the motor starts to decelerate and stop after receiving the overtravel stop signal, and the stop timeout also plays a role in the overtravel process.
- (2) During position control, when the motor is stopped by over travel signal, there may be position deviation pulse. To clear the position deviation pulse, the clear signal /CLR must be input. If the servo unit still receives pulses, they will accumulate until the servo unit gives an alarm.
- (3) During torque control, the SO terminal of servo drive has the function of holding brake, which can't be distributed through the overtravel signal terminals P5-22 and P5-23.
- (4) Servo driver SO terminal is assigned with holding brake function, P0-28 is automatically set to 2.

5.3.3 Stop mode when overtravel in bus mode

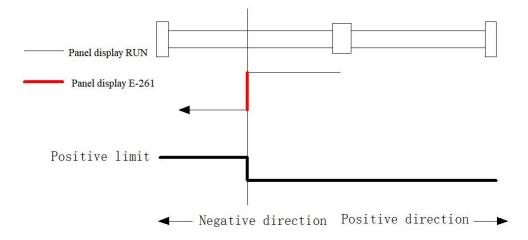
In the bus control modes PP, CSP, PV, CSV, TQ, and CST, according to the P0-28 setting value, when

encountering POT and NOT signals, the servo has different processing methods.

Parameter	Meaning	Default setting	Unit	Setting range	Modify	Effective
P0-28.0	0: Direct alarm, using servo deceleration shutdown method 1: Alarm triggered after deceleration and shutdown in 605Ah mode 2: Not using overtravel, controlled by the master station	2	-	0~3	0	1 3 4 8 9 10

■ The motor is in a prohibited state

Scenario 1: When the servo is in an enabled or disabled state and touches the reverse limit switch, the panel will display NOT, cancel the reverse limit signal, and the panel will return to its previous state.

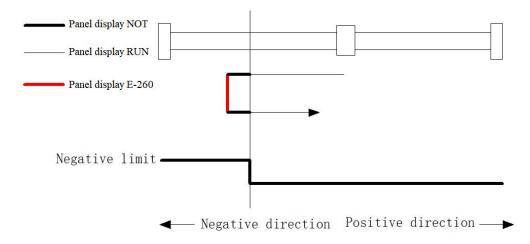

Scenario 2: When the servo is in an enabled or disabled state and touches the forward limit switch, the panel will display POT, cancel the forward limit signal, and the panel will return to its previous state.

Scenario 3: When the servo is in an enabled or disabled state and simultaneously touches the forward and reverse limit switches, the servo will report E-261. If two limit signals are cancelled, the panel will return to its previous state; If any limit signal is cancelled, the panel will display another limit signal, which needs to be cancelled before the panel can return to its previous state.

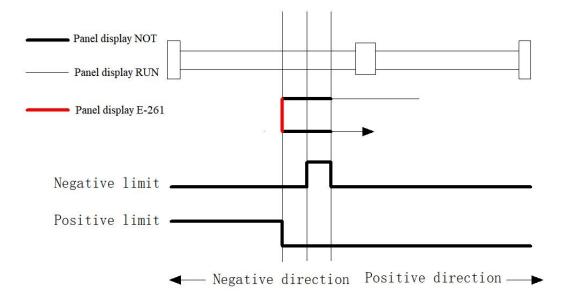
The motor is in motion state

1. Mistakenly touching the reverse limit

Taking the initial movement direction of the motor as the left as an example, when accidentally touching the forward limit switch, the servo will report E-261. If the forward limit switch is cancelled first, and then the alarm is cleared, the shaft will return to a non enabled state, and both the forward and reverse directions of the shaft can move; If the alarm is cleared first and the axis returns to the disabled state, but the panel still displays POT, the axis is still in the forward limit restricted state. The forward limit signal needs to be cancelled in order to release the forward overtravel prohibition.

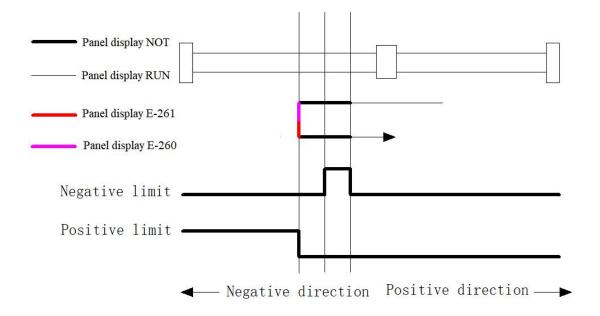


2. Limit overtravel state

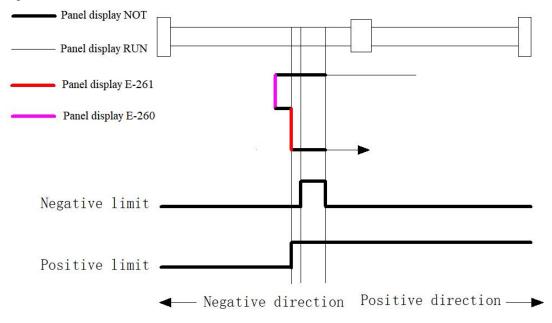

When P0-28 is 1, servo will control the deceleration stop alarm.

(1) Initial movement direction to the left, triggering the overtravel signal without occurrence of offside Scenario 1: Failure to touch the forward limit switch

The initial direction of movement is left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. The shaft stops on the reverse limit switch, and the servo will report E-260. The alarm must be cleared to move the axis in the forward direction. When it touches the falling edge of the reverse limit switch, the panel display can change from NOT to RUN, and the reverse overtravel prohibition can be released.



Scenario 2: In the case of offside, touch the forward limit switch before the axis deceleration stop is completed. The initial direction of movement is left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. However, the axis crosses the reverse limit switch and triggers the falling edge of the reverse limit switch. Before the shaft stops, if the forward limit switch is touched, the servo will report E-261. The forward limit switch must be cancelled in order to clear the E-261 alarm. Otherwise, the alarm cannot be cleared. Then, the shaft moves forward and touches the rising and falling edges of the reverse limit switch again. Only then can the panel display change from NOT to RUN, and the reverse overtravel prohibition be released.



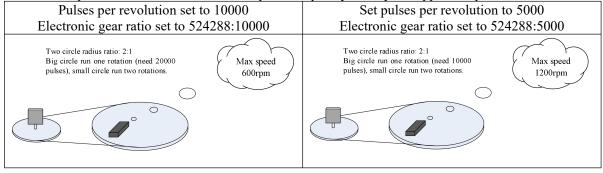
Scenario 3: In the case of offside, when the shaft stops, touch the forward limit switch.

The initial direction of movement is left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. However, the axis crosses the reverse limit switch and triggers the falling edge of the reverse limit switch. When the shaft stops, the servo will report E-260. At this time, if the forward limit switch is touched, the servo will report E-261. The forward limit switch must be cancelled before the E-261 alarm can be cleared. Otherwise, the alarm cannot be cleared. Then, the shaft will move forward and touch the rising and falling edges of the reverse limit switch again. Only then can the panel display change from NOT to RUN, and the reverse overtravel prohibition be released.

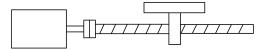
Scenario 4: In the case of offside, touching the forward limit switch during axial forward movement. The initial direction of movement is left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. However, the axis crosses the reverse limit switch and triggers the falling edge of the reverse limit switch. When the shaft stops, the servo will report E-260. After clearing the alarm to move the shaft forward, if the forward limit switch is touched, the servo will report E-261. The forward limit switch must be cancelled before the E-261 alarm can be cleared. Otherwise, the alarm cannot be cleared. Continue to move the shaft forward, touch the rising and falling edges of the reverse limit switch again, and the panel display can change from NOT to RUN to release the reverse overtravel prohibition.

5.4 Position control

5.4.1 General position control


5.4.1.1 Electronic gear ratio

1. Overview


The so-called "electronic gear" function has two main applications:

(1) Determine the number of command pulses needed to rotate the motor for one revolution to ensure that the motor speed can reach the required speed.

As an example of 19-bit encoder motor, the pulse frequency sent by the upper computer PLC is 200kHz:

(2) In the precise positioning, the physical unit length corresponding to 1 command pulse is set for calculation. For example: the object moves 1um per command pulse. The command pulses of load rotating one circle = 6 mm / 1 um = 6000. In the case of deceleration ratio is 1:1, set pulse per rotation P0-11=6000, P0-12=0. Then if the PLC outputs 6000 pulses, the object will move 6 mm.

Encoder: 524288 (19-bit) ball screw pitch: 6mm

Do not change the electronic gear ratio

Without changing the ratio of the electronic gear to the motor, the rotating cycle is 524288 pulses (P 0-11=0, P 0-12=0). If the workpiece is moved 6 mm in one turn, the number of pulses needed is 524288. If the workpiece is moved 10 mm, it will need 10/6*524288=873813.333 pulses. When the decimal number is omitted, the error will occur.

Change the electronic gear ratio

By changing the electronic gear ratio, the motor needs 6000 pulses to rotate one circle. If the workpiece moves 6 mm in one turn, the number of pulses needed is 6 000. If the workpiece is moved 10 mm, it needs 10/6*6000 = 10000 pulses. When the pulse is sent, the decimal number will not be produced and the error will not be produced.

Related parameters

Parameter	Meaning	Default setting	Unit	Setting range	Modify	Effective
P0-11	Pulse numbers per rotation *1	0	pul	0~9999	Servo OFF	At once
P0-12	Pulse numbers per rotation *10000	0	pul	0~9999	Servo OFF	At once
P0-13	Electronic gear ratio (numerator)	1	-	0~65535	V	At once
P0-14	Electronic gear ratio (denominator)	1	-	0~65535	Servo OFF	At once
P0-92	Group 2 Electronic gear ratio (numerator) low bit*1	1	-	1~9999	Servo OFF	At once
P0-93	Group 2 Electronic gear ratio (numerator) high bit*10000	0	-	0~65535	Servo OFF	At once
P0-94	Group 2 Electronic gear ratio (denominator) low bit*1	1	-	1~9999	Servo OFF	At once
P0-95	Group 2 Electronic gear ratio (denominator) high bit*10000	0	-	0~65535	Servo OFF	At once

Note:

(2) When P0-11, P0-12, P0-13 and P0-14 are all set to 0, P0-92, P0-93, P0-94 and P0-95 will take effect.

⁽¹⁾ P0-11~P0-14 is all about the parameters of electronic gear ratio, P0-11, P0-12 is group 1, P0-13, P0-14 is group 2, but the priority of P0-11 and P0-12 is higher than that of P0-13 and P0-14. Only when P0-11 and P0-12 are set to 0, the ratio of electronic gear P0-13 and P0-14 will take effect.

2. Calculation of Pulse Number per Rotation and Electronic Gear Ratio

Steps	Content	Description		
1	Confirm the machine specification	Confirm the deceleration ratio n:m(servo motor turns m rotations while load turns n rotations), ball screw distance, pulley diameter.		
2	Confirm the encoder pulse Confirm the servo motor encoder accuracy			
3	Set the command unit Determine the actual distance or angle correspond pulse of the controller			
4	Calculate the command pulses the load shaft rotates 1 circle	Based on the determined command unit, calculate the command quantity n of the load shaft rotating for 1 revolution.		
5	Calculate the pulses per rotation M	Command pulse number of motor shaft rotating for 1 turn $M=N/(m/n)$.		
6	Set the pulses per rotation (P0-11/P0-12) or Electronic gear ratio (P0-13/P0-14)/(P0-92~95)	$\begin{array}{c} P0\text{-}11\text{=}M\%10000 \\ P0\text{-}12\text{=}M/10000 \\ \hline \\ \frac{P\ 0\ -\ 13}{P\ 0\ -\ 14} = \frac{resolution}{M} = \frac{resolution}{N\ \times\ n} \end{array} \qquad $		

Note:

- (1) In step 6, the effective priority of the number of pulses per revolution is higher than the electronic gear ratio, that is, when P0-11 \sim P0-12 are all 0, P0-13 \sim P0-14 will take effect. In special cases, if the number of pulses per revolution is calculated as a decimal, the electronic gear ratio should be considered.
- (2) When P0-13 and P0-14 exceed the setting range, please divide the electronic gear ratio into numerator and denominator. If the ratio still exceeds the parameter setting range, please use the second gear ratio P0-92 \sim P0-95. Only when P0-11 \sim 14 = 0, the second gear ratio takes effect.
- (3) The resolution of DS5C2 series servo motor encoder is 524288 (19 bits).
- (4) The command unit does not represent the machining accuracy. On the basis of the mechanical accuracy, refining the instruction unit quantity can improve the positioning accuracy of the servo system. For example, when using the lead screw, the mechanical accuracy can reach 0.01mm, so the unit equivalent of 0.01mm is more accurate than the unit equivalent of 0.1mm.

3. Example of setting the electronic gear ratio

		Ball screw	Round table	Belt + pulley
steps	Name	Load shaft P P: pitc Protate = P command unit	Load shaft 1 rotate = $\frac{360^{\circ}}{\text{command unit}}$	Load shaft D: pulley diameter 1 rotate = $\frac{\pi D}{\text{command unit}}$
1	Confirm mechanical specifications	Ball screw pitch: 6mm Machine deceleration ratio: 1:1	1-circle rotate angle: 360° Deceleration ratio: 1:3	Pulley diameter: 100mm Deceleration ratio: 1:2
2	Confirm the number of encoder pulses	Encoder resolution 131072	Encoder resolution 131072	Encoder resolution 131072
3	Confirm the command unit	1 command unit: 0.001mm	1 command unit: 0.1°	1 command unit: 0.02mm
4	Calculate the command amount of 1 revolution of load shaft	6mm/0.001mm=6000	360/0.1=3600	314mm/0.02mm=15700
5	Calculate the pulse number m of one revolution of motor shaft	M =6000/(1/1)=6000	M=3600/(3/1)=1200	M=15700/(2/1)=7850

	Set pulses per rotation P0-11/P0-12	P0-11=6000 P0-12=0	P0-11=1200 P0-12=0	P0-11=7850 P0-12=0
6	Set electronic gear ratio (P0-13/P0-14)/ (P0-92~95)	P0-13=131072 P0-14=6000 After reduction P0-13=8192 P0-14=375	P0-13=131072 P0-14=1200 After reduction P0-13=8192 P0-14=75	P0-13=131072 P0-14=7850 After reduction P0-13=65536 P0-14=3925 Conver to second gear ratio P0-92=5536 P0-93=6 P0-94=3925 P0-95=0

5.4.1.2 Positioning completion signal (/COIN, /COIN_HD)

In position control, the signal indicating the completion of servo motor positioning is used when the command controller needs to complete positioning confirmation.

Related parameters

Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P5-00	Positioning completion width	11	Command unit	0~65535	Anytime	At once
P5-01	Positioning completion detection mode	0	-	0~3	Anytime	At once
P5-02	Positioning completion hold time	0	ms	0~65535	Anytime	At once

Parameter	Signal name	Default setting	Suitable mode	Meaning	Modify	Effective
P5-37	/COIN-HD	n.0000	5 6	Positioning complete holding	Anytime	At once
P5-38	/COIN	n.0000	5 6	Positioning complete output	Anytime	At once

Refer to section 3.2.4 for hardware wiring details.

If it is necessary to output signal from SO2, P5-37 and P5-38 are set to n.0002/0012. Note that an SO terminal can only be used as a signal function.

1. Conditions for positioning completion signal output

(1) /COIN-HD signal output conditions

When the positioning completion detection mode P5-01 is set to 3, the positioning completion holding /COIN-HD signal can be output. When the /COIN signal holds P5-02 time, the COIN-HD signal can be output.

(2) /COIN signal output conditions

According to the positioning completion detection mode set in P5-01, output positioning completion /COIN signal. The following is the precondition for positioning output and the output diagram.

P5-01 setting	Content	Diagram				
	If the absolute deviation is below	/S-ON signal				
0	P5-00, the COIN signal will be output.	U0-08 Pulse offset P5-00				
		/COIN ON OFF ON				
		/S-ON Signal status				
1	After the instruction is finished, the deviation is below	U0-08 Pulse offset P5-00				
	P5-00 and COIN signal is output.	ΔU0-12 Pulse command				
		/COIN ON OFF				
		/S-ON Signal status				
	When the instruction ends and the motor speed is under the	U0-08 Pulse offset P5-00				
2	rotation detection speed (P5-03) and the absolute deviation is less	ΔU0-12 Pulse command				
	than P5-00, the COIN signal is output.	U0-00 Actual speed P5-03				
		/COIN ON OFF				
		/S-ON Signal status				
	At the end of instruction, the absolute deviation value under P5-00,	U0-08 Pulse offset				
3	it outputs COIN signal. If COIN maintains P5-02 time, COIN-HOLD signal is output.	ΔU0-12 Pulse command P5-02 /COIN Signal status OFF P5-02				
		Signal status OFF P5-02 /COIN-HOLD ON Signal status OFF				

2. Description of positioning completion width

(1) The positioning completion width P5-00 changes proportionally due to the change of electronic gear ratio, and the factory default is 11 command units.

The following table is an example:

The felle wing table is all example.					
Number of					
command pulses	positioning completion				
required for one	width P5-00				
revolution of motor					
10000 (default)	11 (default)				
20000	22				
5000	6				
3000	4				
2000	3				

The positioning completion width P5-00 changes proportionally with the number of command pulses required for one revolution of the motor.

The output of the positioning completion signal depends on the positioning completion width. The smaller the width is, the later the positioning completion signal output is, but the signal output does not affect the actual operation state of the motor.

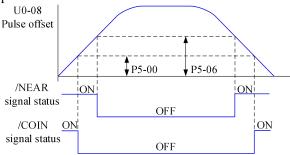
(2) The positioning completion width can also be set separately, and its change will not affect the number of command pulses required for one revolution of the motor.

5.4.1.3 Positioning near signal (/NEAR)

The servo motor is located near the positioning completion signal, so that the equipment can prepare the next action in advance.

Related parameters

Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P5-06	Near signal output width	50	Command unit	0~65535	Anytime	At once


Parameter	Signal name	Default setting	Suitable mode	Meaning	Modify	Effective
P5-46	/NEAR	n.0000	5 6	Positioning near	Anytime	At once
Pafar to section 3.2.2 for hardware wiring details						

Refer to section 3.2.2 for hardware wiring details.

If it is necessary to output from the SO2, P5-46 can be set to n.0002/0012.

1. Positioning approach signal output conditions

When the pulse deviation value U0-08 of the servo driver is lower than the P5-06 setting value, the positioning approach signal (/NEAR) is output.

2. Description of approach signal output

(1) The approach signal output width P5-06 changes proportionally due to the change of the electronic gear ratio. The default setting is 11 command units.

The following table is an example:

Number of	
command pulses	Near signal output width
required for one	P5-06
revolution of motor	
10000 (default)	50 (default)

The near signal output width P5-06 changes proportionally with the number of command pulses required for one revolution of the motor.

The output of the positioning completion signal depends on the positioning completion width. The

20000	100
5000	25
3000	15
2000	10

smaller the width is, the later the positioning completion signal output is, but the signal output does not affect the actual operation state of the motor.

- (2) The approach signal output width can also be set independently, and its change will not affect the number of command pulses required for one revolution of the motor.
- (3) Please set this parameter larger than the positioning completion width.

5.4.1.4 Command pulse prohibition (/INHIBIT)

Position command prohibition, including internal and external position commands. Stop the function of command pulse input during position control. When the /INHIBIT signal is on, the pulse command is no longer counted.

Related parameters

Parameter	Signal name	Default setting	Suitable mode	Meaning	Modify	Effective
P5-32	/INHIBIT	n.0000	5 6	Command pulse prohibition	Anytime	At once

Parameter range n.0000-001A, assigned to other input terminals by parameter P5-32.

If it is necessary to input from SI2, P5-32 can be set to n.0002/0012. Refer to section 3.2.2 for hardware wiring details.

1. /INHIBIT terminal effectiveness description

Parameter setting status	Signal/INHIBIT terminal input status	Signal/INHIBIT terminal logic
P5-32=n.0000	No external terminal input	
P5-32=n.000□	SI□ terminal has no signal input	Invalid
P5-32=n.001□ SI□ terminal has signal input		
P5-32=n.0010	No external terminal input	
P5-32=n.000□	SI□ terminal has signal input	Valid
P5-32=n.001□	SI□ terminal has no signal input	

2. The influence of /INHIBIT terminal signal on the running state of motor

2. The influence of Al villabilities influence of the full line state of motor					
	Motor operation status				
Control mode	/INHIBIT terminal logic valid	/INHIBIT terminal logic invalid			
5- internal position control	Pause current segment	/INHIBIT signal is from ON→OFF, continue running from pause point.			
6- external pulse position control	Pause pulse command reception	/INHIBIT signal is from ON→OFF, continue running from the pulse command received after OFF.			

5.4.1.5 Offset clear (/CLR)

Position offset=(position command – position feedback)(encoder unit)

The position deviation clearing function means that the driver can clear the position deviation when the servo is off or the /CLR signal is received.

Related parameters

Parameter	Signal name	Default setting	Suitable mode	Meaning	Modify	Effective
P5-34	/CLR	n.0000	All	Pulse deviation clear	Anytime	At once

Parameter range n.0000-001A, assigned to other input terminals by parameter P5-34.

If it is necessary to input signal from SI2, P5-34 can be set to n.0002/0012. Refer to section 3.2.2 for hardware wiring details.

1. /CLR signal effectiveness

parameter setting status	Signal /CLR terminal input status	Signal /CLR terminal logic
P5-34=n.0000	No external terminal input	
P5-34=n.000□	SI□ terminal has no signal input	Invalid
P5-34=n.001□	SI	
P5-34=n.0010	No external terminal input	
P5-34=n.000□	SI	Valid
P5-34=n.001□	SI□ terminal has no signal input	

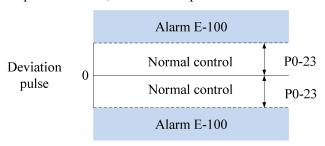
2. /CLR signal explanation

Send the pulse to the servo, execute the /CLR input signal, the servo will lock the current pulse counts, then update the current position of the encoder to the position feedback in the control, at the same time, clear the intermediate quantity of the position loop, speed loop and current loop. /CLR signal is triggered by edge.

3. Other description of pulse position deviation clearing signal

Setting F0-02 to 1 can also clear the pulse position deviation.

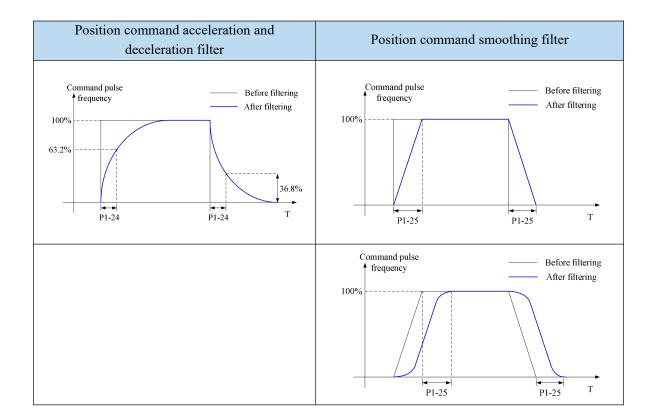
5.4.1.6 Position pulse deviation


Pulse deviation value refers to the difference between command pulse of command controller (such as PLC) and feedback pulse of servo unit in position mode. Its unit is 1 command unit, which is related to the command unit determined by electronic gear ratio.

In position control, when the deviation pulse exceeds a certain limit value, an alarm will occur, and this threshold value is the deviation pulse limit value.

Related parameters

parameter	Meaning	Default setting	Unit	Range	Change	Effective
P0-23	pulse deviation limit value	2000	0.01 turns	0~65535	Anytime	At once


When the deviation pulse limit is 0, the deviation pulse will not be detected.

5.4.1.7 Position command filter

Related parameters

Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P1-24	Position command acceleration and deceleration filtering time	0	0.1ms	0~65535	Servo OFF	At once
P1-25	Position command smoothing filtering time	0	0.1ms	0~65535	Servo OFF	At once

5.4.1.8 Reference origin

1. Find the reference origin

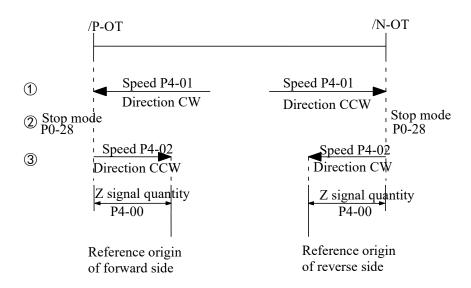
To find out the physical origin of working table and make it as the coordinates origin of point position control. Users can select finding reference origin at forward or reverse side.

Function setting:

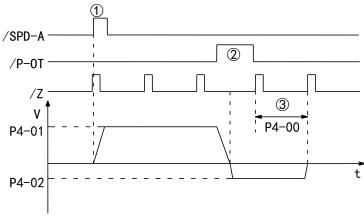
Parameter	Meaning	Default setting	Unit	Range	Change	Effective	
P4-00	Origin function	0	_	0~1	Servo	At once	
n.xx□x	Origin function		_	0.31	OFF	Atonce	

Note: This function is applicable to position mode 5 and 6; when this parameter is set to 0, the function of Origin-finding is invalid; when it is set to n.001x, the function of Origin-finding can be used. (please set P9-21=0)

Signal setting


Parameter	Signal	Default	Meaning	Modify
P5-28	/SPD-A	n.0000	Mode 3: internal speed selecting signal	Range: 0000-0014, distributes to input terminal through P5-28. When it set to 0001, it means
			Mode 5: find origin point at forward direction	input signal from SI1.
P5-29 /SPD-B		n.0000	Mode 3: internal speed selecting signal	Range: 0000-0014, distributes to input terminal through P5-29.
15-27	i i i i i i i i i i i i i i i i i i i		Mode 5: find origin point at reverse direction	When it set to 0001, it means input signal from SI1.

Related parameter setting:


related parameter setting.						
Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P4-00 n.xxx	Z phase signal numbers	2	-	0~f	Servo OFF	At once
P4-01	The speed hitting the proximity switch	600	rpm	0~65535	Servo OFF	At once
P4-02	The speed leaving the proximity switch	100	rpm	0~65535	Servo OFF	At once

Note: The origin finding function is only applicable to single turn absolute value motors (multi-turn absolute value motors P0-79=1 can also support the origin finding function)

Find reference origin diagram:

Sequential diagram of finding reference origin on forward side:

Steps

- (1) Install limit switch at forward and reverse side. At the rising edge of /SPD-A, motor runs forward at the speed of P4-01 to find the reference origin on forward side.
- (2) After the working table hit the limit switch, the motor stop as the mode set by parameter P0-28
- (3) Motor leaves the limit switch at the speed of P4-02. After the working table left the limit switch, the motor run at the Z phase signal position of No.n optical encoder. This position is considered as the coordinates origin, n is decided by parameter P4-00.

5.4.1.9 Homing function

1. Function overview

The return to origin function refers to that when the servo enable is on in the position control mode, after the return to origin function is triggered, the servo motor will find the origin and complete the positioning function. The found origin can be used as the position reference point for subsequent position control.

During the homing operation, other position commands (including the retriggered homing signal) are shielded. After the homing is completed, the servo driver can respond to other position commands.

After the homing is completed, the servo driver outputs the homing completion signal, and the upper computer can confirm that the homing has been completed after receiving the signal.

1. Parameter setting

Parameter	Name	Range	Meaning	Set time	Effective	Default
P9-11.0	Z phase numbers	0~F	P9-11.0=0: not find Z phase P9-11.0=1: find one Z phase P9-11.0=2: find two Z phases And so on	Servo OFF	Servo ON	0
P9-11.1	Homing trigger mode	0~2	P9-11.1=0: not trigger homing P9-11.1=1: trigger homing through SI terminal (P5-28) P9-11.1=2: trigger homing after enabling	Servo OFF	Servo ON	0
P9-11.2	Homing mode	0~7	P9-11.2=0: homing mode 0 P9-11.2=1: homing mode 1 P9-11.2=2: homing mode 2 And so on	Servo OFF	Servo ON	0
P9-11.3	Deceleration mode when meeting the overlimit signal	0, 1	P9-11.3=0: decelerate as the setting of P9-14 P9-11.3=1: decelerate at once	Servo OFF	Servo ON	0

Note: P9-11.0 can set up to 15 Z phases. P9-11.1 = 0 means that the homing function cannot be used. This parameter can be understood as the enabling bit of the homing function. Homing modes 1, 3, 5 and 7 are the opposite situation of homing modes 0, 2, 4 and 6 respectively.

Parameter	Name	Range	Unit	Meaning	Set time	Effective	Default value
P9-12	Homing high speed	0~3000	rpm	Return to the origin at high speed, find the deceleration point and execute the mechanical offset	Servo OFF	Servo ON	200
P9-13	Homing low speed	0~1000	rpm	Homing with low speed. This low speed should be low enough not to cause mechanical shock when stopping	Servo OFF	Servo ON	20
P9-14	Homing acc/dec time	0~1000	ms	The acceleration and deceleration time here refers to the time required for 0 to 1000 rpm	Servo OFF	Servo ON	1000
P9-15	Maximum time allowed to return to the origin	0~12000	10ms	If the time spent in the whole process of homing exceeds the time set by this parameter, an alarm will be given. When P9-15 = 0, the timeout alarm will be shielded	Servo OFF	Servo ON	0
P9-16	Touch stop mode homing speed	0~1000	rpm	This parameter is only available for home mode 6 and 7	Servo OFF	Servo ON	2

Parameter	Name	Range	Unit	Meaning	Set time	Effective	Default value
	threshold						
P9-17	Touch stop mode homing torque threshold	0~300%	%	This parameter is only available for home mode 6 and 7 The base value of the percentage is the rated torque	Servo OFF	Servo ON	100%
P9-18	Touch stop mode homing time threshold	10~1500	ms	This parameter is only available for home mode 6 and 7	Servo OFF	Servo ON	500
P9-19	Quantitativ e pulses low bit	-9999~9999	-	Quantitative pulses low bit	Servo OFF	Servo ON	0
P9-20	Quantitativ e pulses high bit	-9999~9999	-	Quantitative pulses high bit	Servo OFF	Servo ON	0
P9-21	New/old homing function selection	0, 1	-	P9-21=0: old homing function P9-21=1: new homing function	Servo OFF	Power on again	0
P9-22	New homing end filter time	50~10000	ms	When the homing is about to end, this filtering time is required. Wait until the motor stops completely before completely exiting the homing mode. After this filtering time, the return to origin completion signal will be output.	Servo OFF	Servo ON	500

Note: Actual mechanical offset = $P9-19 + P9-20 \times 10000$, P9-19 and P9-20 need same symbol (all positive or negative value). The mechanical offset here is the absolute position of the servo after homing.

Parameter n.xxxx	Name	Meaning	Set time	Effective	Default
P5-22	Forward overtravel signal POT	Forward limit signal in homing mode	Operation setting	Take effect at once	0
P5-23	Reverse overtravel signal NOT	Reverse limit signal in homing mode	Operation setting	Take effect at once	0
P5-54	Homing completion signal	When the homing action and status are completed, the homing completion signal will be output. Even if other modes are executed after the homing is completed, the homing completion signal will not disappear. When the homing is started again, the homing completion signal will disappear.	Operation setting	Take effect at once	0
P5-64	Homing switch signal	The origin switch signal is required in the process of returning to the origin.	Operation setting	Take effect at once	0
P5-28	SI terminal start homing	When P9-11.1=1, P5-28 distributed the SI terminal, the homing can be triggered by SI terminal.	Operation setting	Take effect at once	0

2. New homing mode selection

To use the new homing function, first set **P9-21=1**, then set the overtravel switch (POT/NOT) and the origin switch. If the mechanical offset (P9-19 and P9-20 are set), please set the offset within the travel range to ensure that the mechanical equipment will not be damaged during the homing process!

The number of Z phases (P9-11.0) and the mechanical offset (P9-19, P9-20) can be valid at the same time. If the number of Z phases (P9-11.0) and the mechanical offset (P9-19, P9-20) are not set to 0, the servo will find the number of Z phases (P9-11.0) first, and then execute the mechanical offset (P9-19, P9-20). If the number of Z

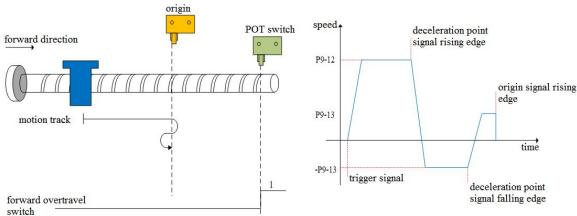
phases (P9-11.0) is 0 and the mechanical offset (P9-19, P9-20) is not 0, the servo does not find the Z phase, but executes the mechanical offset (P9-19, P9-20). If the number of Z phases is not 0 but the mechanical offset is 0, the servo will find the Z phase (P9-11.0) without performing the mechanical offset.

There are 8 homing modes in total, as follows:

- (1) Positive homing, the deceleration point is the origin switch, and the origin is the origin switch or motor Z signal (P9-11.2 = 0)
- (2) Reverse homing, the deceleration point is the origin switch, and the origin is the origin switch or motor Z signal (P9-11.2 = 1)
- (3) Positive homing, the deceleration point and origin are motor Z signal (P9-11.2 = 2)
- (4) Reverse homing, the deceleration point and origin are the motor Z signal (P9-11.2 = 3)
- (5) Forward homing, the deceleration point is the forward overtravel switch, and the origin is the forward overtravel switch or motor Z signal (P9-11.2=4)
- (6) Reverse homing, the deceleration point is the reverse overtravel switch, and the origin is the reverse overtravel switch or motor Z signal (P9-11.2 = 5)
- (7) Positive homing, the deceleration point is the mechanical limit position, and the origin is the mechanical limit position or motor Z signal (P9-11.2 = 6)
- (8) Reverse homing, the deceleration point is the mechanical limit position, and the origin is the mechanical limit position or motor Z signal (P9-11.2 = 7)

Each homing mode is analyzed in detail below:

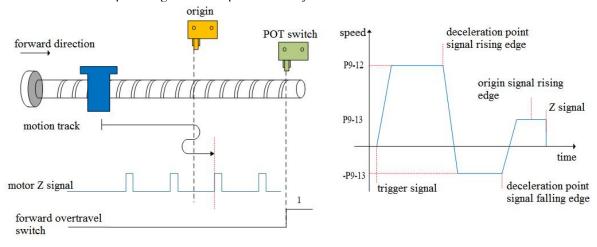
1. Homing mode 0 — Positive homing, the deceleration point is the origin switch, and the origin is the origin switch or motor Z signal (P9-11.2 = 0)


To use this mode, you need to connect pot, not and origin switches.

(1) When the motor starts to move, the signal of the origin switch (deceleration point) is invalid (P5-64 = 0-invalid, 1-valid), and the forward overtravel switch (POT) (P5-22) is not triggered in the whole process. Firstly, the servo motor searches the deceleration point (origin) signal in the high-speed forward direction with the set value of P9-12 (homing high speed) until it meets the rising edge of the deceleration point (origin) signal. After gradually decelerating to -P9-13 (homing low speed) according to the setting of P9-14 (homing acceleration and deceleration time), the servo motor searches the deceleration point(origin) signal falling edge in the reverse direction at the low speed set by -P9-13 (homing low speed). When encountering the deceleration point (origin) signal rising edge at low

(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

speed with P9-13 (homing low speed). The next homing action can be divided into four cases:

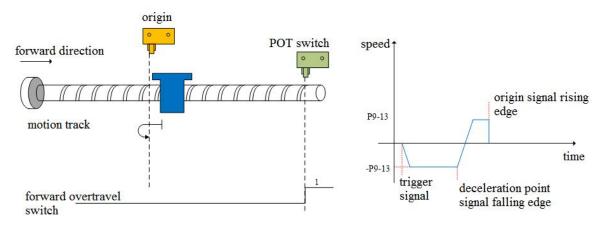

During the operation of continuing to search the rising edge of deceleration point (origin) signal at low speed with P9-13 (homing low speed), stop immediately when encountering the rising edge of deceleration point (origin) signal.

(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

In the operation process of continuing to search the rising edge of deceleration point (origin) signal at low speed with P9-13 (homing low speed), stop immediately when encountering the rising edge of deceleration point (origin) signal. After the motor is completely stopped, the motor will move a quantitative pulse (P9-19, P9-20) with speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), then the motor will stop.

(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0: During the operation of continuing to search the rising edge of deceleration point (origin) signal at low speed P9-13 (homing low speed), continue to run after encountering the rising edge of deceleration point (origin) signal, and then find the first Z-phase signal and stop immediately.

(d) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

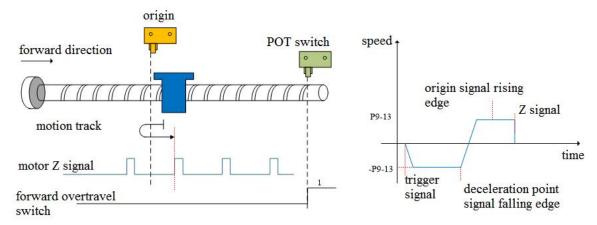

During the operation of continuing to search the rising edge of the deceleration point (origin) signal at low speed P9-13 (homing low speed), continue to run after encountering the rising edge of the deceleration point (origin) signal, then find the first z-phase signal and stop immediately. After the motor is completely stopped, according to the set number of mechanical offset pulses (P9-19, P9-20) and direction (it can be positive direction or negative direction), the motor goes through a quantitative pulses (P9-19, P9-20) at the speed set by P9-12 (homing high speed), and then the motor stops.

(2) When the motor starts to move, the origin switch (deceleration point) signal is valid (P5-64 = 0-invalid, 1-valid), and the forward overtravel switch (P5-22) is not triggered in the whole process:

The servo motor directly searches for the falling edge of the deceleration point (origin) signal at low speed -P9-13 (homing low speed). If it encounters the falling edge of the deceleration point (origin) signal, it will reverse (i.e. forward), and continue to search for the rising edge of the deceleration point (origin) signal at low speed with P9-13 (homing low speed). The next homing action can be divided into four cases:

(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

In the process of forward acceleration or forward constant speed operation, stop immediately when encountering the rising edge of deceleration point (origin) signal.

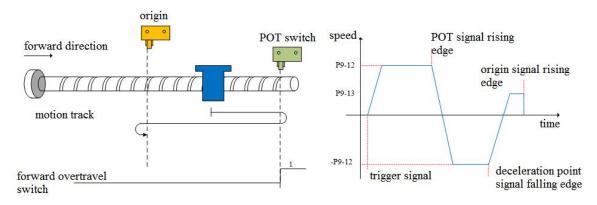


(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

In the process of positive acceleration or positive constant speed operation, stop immediately after encountering the rising edge of the origin signal. After the motor is completely stopped, according to the set number of mechanical offset pulses and direction (either positive or negative direction), the motor will move a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (homing high speed), and then the motor will stop.

(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

In the process of forward acceleration or forward constant speed operation, continue to run after encountering the rising edge of the origin signal, and then find the first Z-phase signal and stop immediately.

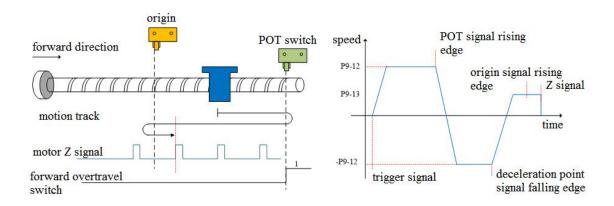


In the process of positive acceleration or positive constant speed operation, continue to run after encountering the rising edge of the origin signal, and then find the first Z-phase signal and stop immediately. After the motor is completely stopped, the motor will run a quantitative pulse (P9-19, P9-20) at the set speed P9-12 (homing high speed) according to the set number of mechanical offset pulses (P9-19, P9-20) and direction (either positive or negative direction), then the motor stops.

(3) When the motor starts to move, the signal of the origin switch (deceleration point) is invalid (P5-64 = 0-invalid, 1-valid), and the forward overtravel switch (P5-22) triggered in the process is valid.

Firstly, the servo motor forward searches for the deceleration point signal at high speed P9-12 (homing high speed). After encountering the forward overtravel switch (POT) (P5-22), the driver immediately reverse searches for the falling edge of the deceleration point (origin) signal at the speed -P9-12 (homing high speed) according to the value set by P9-14 (homing acceleration and deceleration time). After encountering the falling edge of the deceleration point (origin) signal, decelerate in the reverse direction (i.e. restore the forward direction) according to the set value of P9-14 (homing acceleration and deceleration time). The servo motor forward searches the rising edge of the deceleration point (origin) signal at low speed of P9-13 (homing low speed). The next action back to the origin can be divided into four cases:

(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0: In the process of forward acceleration or forward constant speed operation, stop immediately when encountering the rising edge of the origin signal.



(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

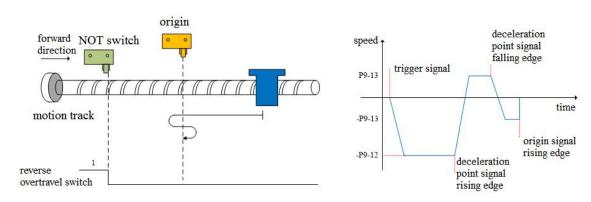
In the process of positive acceleration or positive constant speed operation, stop the machine immediately after encountering the rising edge of the deceleration point (origin) signal. After the motor is completely stopped, the motor will move a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), then the motor stops.

(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

In the process of forward acceleration or forward constant speed operation, continue to run after encountering the rising edge of deceleration point (origin) signal, and then find the first Z-phase signal and stop immediately.

In the process of positive acceleration or positive constant speed operation, continue to run after encountering the rising edge of the deceleration point (origin) signal, and then find the first Z-phase signal to stop immediately. After the motor is completely stopped, the motor will run a quantitative pulse (P9-19, P9-20) at the set speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), then the motor stops.

2. Homing mode 1——Reverse return to zero, the deceleration point is the origin switch, and the origin is the origin switch or motor Z signal (P9-11.2=1)

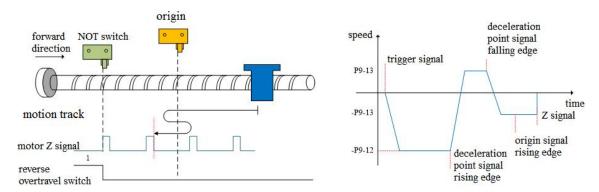

It needs to connect POT, NOT, origin switch to use this mode.

(1) When the motor starts to move, the signal of origin switch (deceleration point) is invalid, and the reverse overtravel switch (NOT)(P5-23) is not triggered in the whole process

Firstly, the servo motor searches for the deceleration point signal at high speed -P9-12 (homing high speed) in reverse until it meets the rising edge of the deceleration point signal. After gradually accelerating to P9-13 (homing low speed) according to the setting of P9-14 (homing acceleration and deceleration time), the servo motor forward searches for the falling edge of deceleration point (origin) signal at the low speed P9-13 (homing low speed). When encountering the falling edge of deceleration point (origin) signal, it will reverse (resume reverse), and continue to search the rising edge of the deceleration point (origin) signal at a low speed -P9-13(homing low speed). The next back to origin action can be divided into four cases:

(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

During the operation of continuing to search for the rising edge of deceleration point (origin) signal at low speed -P9-13 (homing low speed), stop immediately when encountering the rising edge of deceleration point (origin) signal.



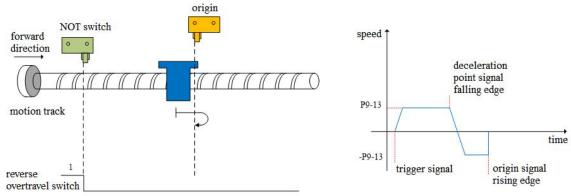
(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

During the operation of continuing to search the rising edge of deceleration point (origin) signal at low speed -P9-13 (homing low speed), stop the machine immediately after encountering the rising edge of deceleration point (origin) signal. After the motor is completely stopped, the motor will run a quantitative pulse (P9-19, P9-20) at the set speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), then the motor stops.

(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0: During the operation of continue to search the rising edge of deceleration point (origin) signal at low speed -P9-13

(homing low speed), continue to run after encountering the rising edge of deceleration point (origin) signal, and then find the first Z-phase signal and stop immediately.

(d) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

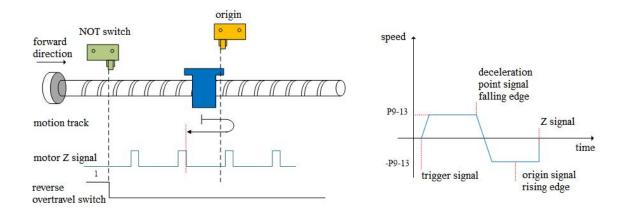

During the operation of continue to search the rising edge of the deceleration point (origin) signal at low speed -P9-13 (homing low speed), continue to operate after encountering the rising edge of the deceleration point (origin) signal, then find the first Z-phase signal and stop immediately. After the motor stops completely, according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), the motor goes through a quantitative pulse (P9-19, P9-20) at the speed P9-12 (homing high speed), and then the motor stops.

(2) When the motor starts to move, the signal of origin switch (deceleration point) is valid (P5-64 = 0-invalid, 1-valid), and the reverse overtravel switch is not triggered in the whole process (NOT) (P5-23).

The servo motor directly forward searches for the falling edge of the deceleration point (origin) signal at low speed P9-13 (homing low speed). If it encounters the falling edge of the deceleration point (origin) signal, it will reverse (i.e. negative direction), and continue to search for the rising edge of the deceleration point (origin) signal at low speed -P9-13 (homing low speed). The next action of returning to origin can be divided into four cases:

(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

In the process of negative acceleration or negative constant speed operation, stop immediately when encountering the rising edge of the origin signal.

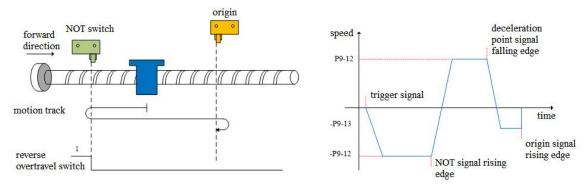


(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

In the process of negative acceleration or negative constant speed operation, stop the machine immediately after encountering the rising edge of the origin signal. After the motor is completely stopped, the motor will walk a quantitative pulse (P9-19, P9-20) at the speed P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), and then stop the motor.

(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

During negative acceleration or negative constant speed operation, continue operation after encountering the rising edge of deceleration point (origin) signal, and then stop immediately after finding the first Z-phase signal.

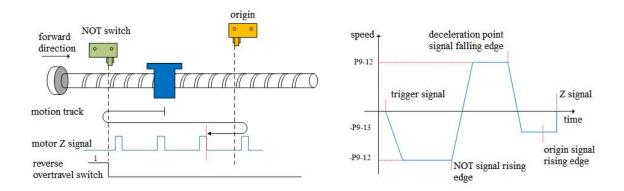

In the process of negative acceleration or negative constant speed operation, continue to operate after encountering the rising edge of the deceleration point (origin) signal, and then find the first Z-phase signal to stop immediately. After the motor stops completely, the motor will run a quantitative pulse (P9-19, P9-20) at the set speed P9-12 (homing high speed) according to the set mechanical offset pulse numbers and direction (either positive or negative direction), then the motor stops.

(3) When the motor starts to move, the signal of the origin switch (deceleration point) is invalid (P5-64 = 0-invalid, 1-valid), and the reverse overtravel switch triggered in the process is valid (NOT) (P5-23).

Firstly, the servo motor reverse searches for the deceleration point (origin) signal at high speed -P9-12 (homing high speed). After encountering the reverse overtravel switch (NOT), the driver decelerates in reverse (i.e. forward) according to the value set in P9-14 (homing acceleration and deceleration time), and immediately searches for the falling edge of the deceleration point (origin) signal at high speed P9-12 (homing high speed) in the forward direction. After encountering the falling edge of the deceleration point (origin) signal, decelerate in the reverse direction (i.e. negative direction) according to the set value of P9-14 (homing acceleration and deceleration time), and the servo motor searches the rising edge of the deceleration point (origin) signal in the reverse low speed -P9-13 (homing low speed). The next homing action can be divided into four cases:

(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of the origin signal.

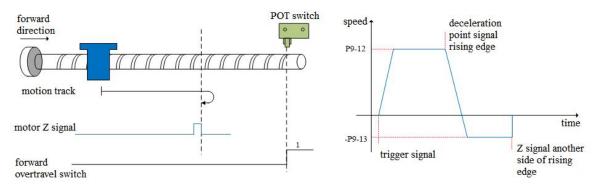


(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

In the process of reverse acceleration or reverse constant speed operation, stop the machine immediately after encountering the rising edge of the deceleration point (origin) signal. After the motor is completely stopped, the motor will move a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), then the motor stops.

(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

In the process of reverse acceleration or reverse constant speed operation, continue the operation after encountering the rising edge of the origin signal, and then stop immediately after finding the first Z-phase signal.


In the process of reverse acceleration or reverse constant speed operation, continue to operate after encountering the rising edge of the deceleration point (origin) signal, and then find the first Z-phase signal to stop immediately. After the motor is completely stopped, the motor will run a quantitative pulse (P9-19, P9-20) at the set speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), then the motor stops.

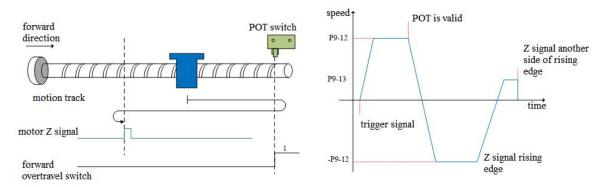
- 3. Homing mode 2—forward homing, deceleration point and origin are motor Z signal (P9-11.2=2) In this mode, the number of Z phases of the motor is not found. To use this mode, you need to connect POT and NOT.
 - (1) When the motor starts to move, the Z signal is invalid or valid (P5-64 = 0-invalid, 1-valid), and the forward overtravel switch (POT) is not triggered in the whole process.

Firstly, the servo motor forward searches the Z signal at the high-speed P9-12 (homing high speed). After encountering the rising edge of the Z signal, it decelerates in the reverse direction according to the set value of P9-14 (homing acceleration and deceleration time), accelerates to -P9-13 (homing low speed) and reverse searches the Z signal at low speed. Next, the homing action is divided into two cases:

(a) Mechanical offset (P9-19, P9-20) is 0:

In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of the other side of the motor Z signal.

(b) Mechanical offset (P9-19, P9-20) is not 0:


In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge on the other side of the motor Z signal. After the motor is completely stopped, the motor will walk a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), then the motor stops.

(2) When the motor starts to move, the Z signal is invalid or valid (P5-64 = 0-invalid, 1-valid), and the forward overtravel switch is triggered in the process (POT) (P5-22).

Firstly, the servo motor searches for the Z signal in forward direction with the high speed P9-12 (homing high-speed speed). After encountering the forward overtravel switch, the driver decelerates in the reverse direction according to P9-14 (homing acceleration and deceleration time), and searches for the Z signal in the reverse direction with the high-speed -P9-12 (homing high-speed) until encountering the rising edge of the Z signal. The machine gradually decelerates in the reverse direction (i.e. returns to the forward direction) according to P9-14 (homing acceleration and deceleration time). The servo motor searches the rising edge of the other side of the Z signal in the forward direction and low speed P9-13 (homing low speed). The next homing action is divided into two cases:

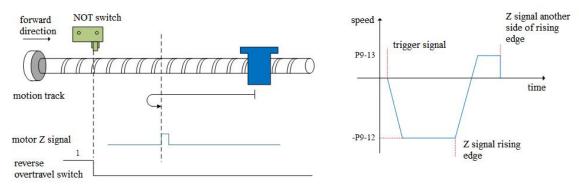
(a) Mechanical offset (P9-19, P9-20) is 0:

In the process of forward acceleration or forward constant speed operation, stop immediately when encountering the rising edge of the other side of the Z signal.

(b) Mechanical offset (P9-19, P9-20) is not 0:

In the process of positive acceleration or positive constant speed operation, stop immediately when encountering the rising edge on the other side of the motor Z signal. After the motor is completely stopped, the motor will walk a quantitative pulse at the speed set by P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), and then stop the motor.

4. Homing mode 3—reverse homing, the deceleration point and origin are motor Z signal (P9-11.2=3)


In this mode, the number of Z phases of the motor is not found. To use this mode, you need to connect POT and NOT.

(1) When the motor starts to move, the Z signal is invalid or valid (P5-64 = 0-invalid, 1-valid), and the reverse overtravel switch is not triggered in the whole process (NOT).

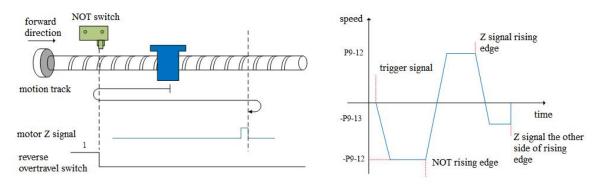
Firstly, the servo motor searches for the Z signal in reverse direction with the high speed -P9-12 (homing high speed). After encountering the rising edge of the Z signal, it decelerates and reverses according to the set value of P9-14 (homing acceleration and deceleration time), accelerates to P9-13 (homing low speed) and searches for the Z signal at low speed in forward direction. Next, the homing action is divided into two cases:

(a) Mechanical offset (P9-19, P9-20) is 0:

In the process of forward acceleration or forward constant speed operation, stop immediately when encountering the rising edge of the other side of the motor Z signal.

(b) Mechanical offset (P9-19, P9-20) is not 0:

In the process of positive acceleration or positive constant speed operation, stop the machine immediately when encountering the rising edge on the other side of the motor Z signal. After the motor is completely stopped, the motor will walk a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), then the motor stops.


(2) When the motor starts to move, the Z signal is invalid or valid (P5-64 = 0-invalid, 1-valid), and the reverse overtravel switch is triggered in the process (NOT)

The servo motor searches for the Z signal at high speed -P9-12 (homing high speed) in reverse direction. After encountering the reverse overtravel switch, the driver decelerates and reverses according to P9-14, and then searches for the Z signal at high speed P9-12 (homing high speed) in forward direction until encountering the

rising edge of the Z signal, and gradually decelerates and reverses (i.e. restores the reverse direction) according to the set value of P9-14 (homing acceleration and deceleration time). The servo motor searches the rising edge on the other side of the Z signal at low speed -P9-13 (homing low speed) in reverse direction. Next, the homing action is divided into two cases:

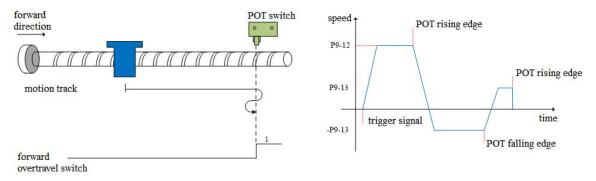
(a) Mechanical offset (P9-19, P9-20) is 0:

In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of the other side of the Z signal.

(b) Mechanical offset (P9-19, P9-20) is not 0:

In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge on the other side of the motor Z signal. After the motor is completely stopped, the motor will walk a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), then the motor stops.

5. Homing mode 4—forward homing, deceleration point and origin are forward overtravel switch POT (P5-22) (P9-11.2=4)

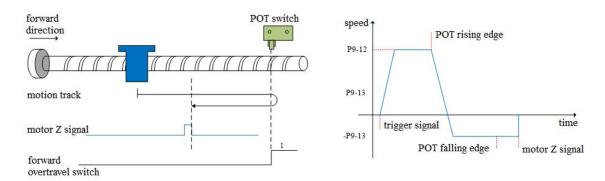

To use this mode, it needs to connect NOT, POT.

(1) When the motor starts moving, the forward overtravel switch (POT) is invalid

Firstly, the servo motor searches the forward overtravel switch at high speed P9-12 (homing high speed). After encountering the rising edge of the forward overtravel switch signal, it gradually decelerates in reverse according to the setting of P9-14 (homing acceleration and deceleration time). The servo motor searches the falling edge of the forward overtravel switch signal in reverse direction at low speed -P9-13 (homing low speed). After encountering the falling edge of the forward overtravel switch signal, the next action of returning to the origin can be divided into four cases:

(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

Decelerate in the reverse direction (i.e. restore the forward direction), and search for the rising edge of the forward overtravel switch signal in the forward direction and low speed P9-13 (homing low speed). In the process of forward acceleration or forward constant speed operation, stop immediately when encountering the rising edge of the forward overtravel switch signal.


(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

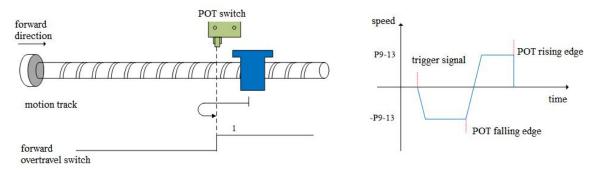
Decelerate in the reverse direction (i.e. restore the forward direction), and search the rising edge of the forward overtravel switch signal in the forward with low speed P9-13 (homing low speed). In the process of forward acceleration or forward uniform speed operation, stop immediately when encountering the rising edge of the forward overtravel switch signal. After the motor is completely stopped, motor walks a quantitative pulse at the speed set by P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (it can only be in the negative direction, that is, it must move between the origin switch and NOT), and then the

motor will stop.

(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

Continue to operate in reverse at the low speed set by -P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal.

(d) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

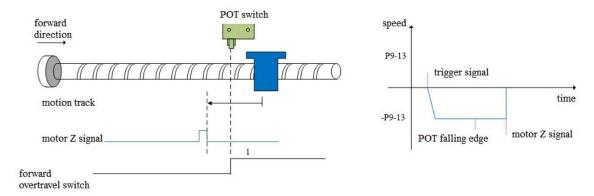

Continue to operate in the reverse direction at the low speed set by -P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it can be negative or positive, but it must move between the origin switch and NOT), and then the motor stops.

(2) Forward overtravel switch is valid when motor starts moving (POT) (P5-22)

The servo motor directly searches for the falling edge of the forward overtravel switch signal (POT) at a reverse low speed -P9-13 (homing low speed). After encountering the falling edge of POT, the next homing action is divided into four cases:

(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

Decelerate in the reverse direction (i.e. restore the forward direction), search for the rising edge of POT in the forward low-speed P9-13 (homing low speed), and stop immediately when encountering the rising edge of POT during forward acceleration or forward constant speed operation.



(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

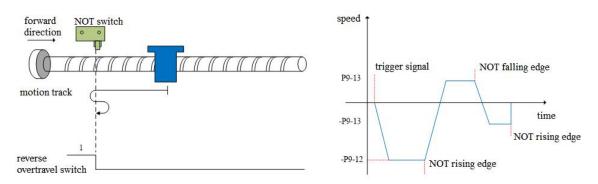
Decelerate in reverse direction (i.e. restore the positive direction), search the rising edge of POT at low speed and positive direction with P9-13 (homing low speed). In the process of positive acceleration or positive constant speed operation, stop immediately when encountering the rising edge of POT. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it only can be negative direction, but it must move between the origin switch and NOT), and then the motor stops.

(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

Continue to operate in reverse at the low speed -P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal.

Continue to operate in the reverse direction at the low speed -P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it can be negative or positive, but it must move between the origin switch and NOT), and then the motor stops.

6. Homing mode 5—reverse homing, deceleration point and origin are reverse overtravel switch NOT (P5-23) (P9-11.2=5)

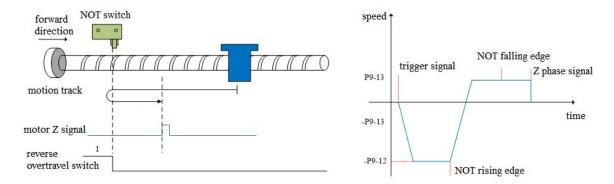

To use this mode, please connect POT, NOT.

(1) When the motor starts moving, the reverse override switch (NOT) is invalid

Firstly, the servo motor searches for the reverse overtravel switch (NOT) at reverse high speed -P9-12 (homing high speed). After encountering the rising edge of NOT, it gradually decelerates in reverse according to the setting of P9-14 (homing acceleration and deceleration time). The servo motor searches for the falling edge of NOT at forward low speed P9-13 (homing low speed). After encountering the falling edge of NOT, the next homing action can be divided into four cases:

(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

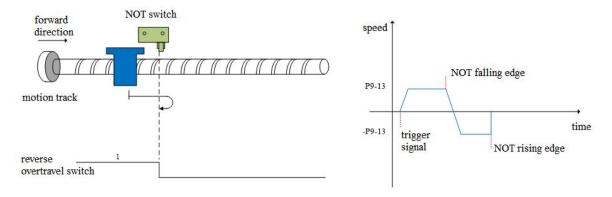
Decelerate in the reverse direction (i.e. restore the reverse direction), and search for the rising edge of NOT at the reverse low speed -P9-13 (homing low speed). In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of NOT.



(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

Decelerate in the reverse direction (i.e. restore the reverse direction), and search for the rising edge of the reverse overtravel switch signal (NOT) at the reverse low speed -P9-13 (homing low speed). In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of NOT. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it only can be positive, but it must move between the origin switch and POT), and then the motor stops.

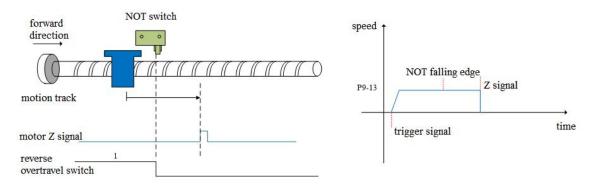
(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:


Continue to operate in the forward low-speed P9-13, and then stop immediately after encountering the rising edge of the first Z-phase signal.

Continue to operate in the forward low-speed P9-13, and then stop immediately after encountering the rising edge of the first Z-phase signal. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it can be positive or negative), but it must move between the origin switch and POT), and then the motor stops.

- (2) When the motor starts to move, the reverse overtravel switch (NOT) (P5-23) is valid The servo motor directly searches for the falling edge of the reverse overtravel switch signal (NOT) at the forward low speed P9-13 (homing low speed). After encountering the falling edge of NOT, the next homing action is divided into four cases:
- (a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

Decelerate in reverse direction (i.e. resume reverse direction), search for the rising edge of NOT in reverse direction at low speed -P9-13(homing low speed). During reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of NOT.

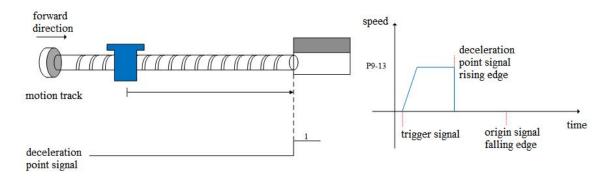


(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

Decelerate in reverse direction (i.e. recover in reverse direction), search for the rising edge of NOT in reverse direction at low speed -P9-13 (homing low speed). During reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of NOT. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it only can be positive), but it must move between the origin switch and POT), and then the motor stops.

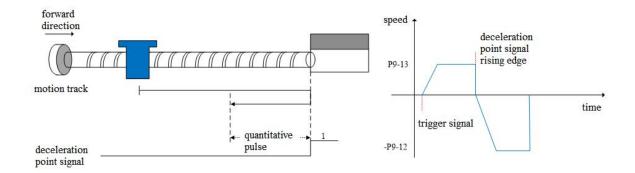
(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

Continue to operate at the forward low speed P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal.

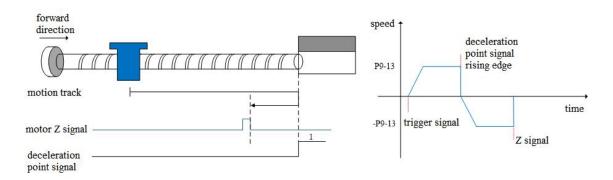

Continue to operate at the forward low speed P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it can be positive or negative, but it must move between the origin switch and POT), and then the motor stops.

7. Homing mode 6—forward homing, deceleration point and origin are forward mechanical limit position (P9-11.2=6)

To use this mode, no need to connect POT, NOT and origin switch.


Firstly, the servo motor runs forward at low speed P9-13 (homing low speed). After hitting the mechanical limit position, if the absolute value of torque reaches the upper torque limit of P9-17 (touch stop homing mode torque threshold), and the absolute value of speed is lower than the set value of P9-16 (touch stop homing mode speed threshold), this state remains P9-18 (touch stop homing mode time threshold) After the set time, it is judged that the mechanical limit position is reached, and the next homing action can be divided into four cases:

(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0: Shut down immediately.

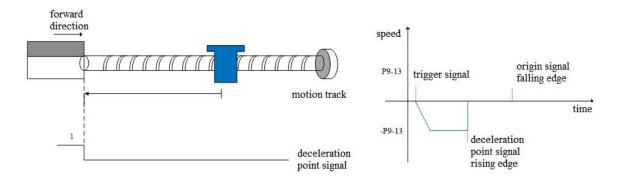


(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

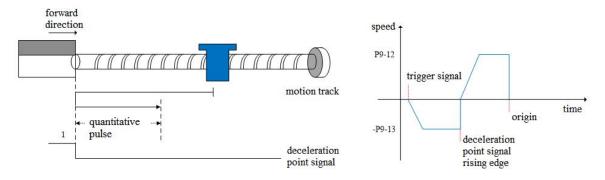
The servo motor stops immediately. After it stops completely, according to the set number of mechanical offset pulses, the motor reverse moves a quantitative pulse (P9-19, P9-20) at the speed set by -P9-12 (homing high speed), and then the motor stops.

(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0: Operate in reverse at the low speed set by -P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal.

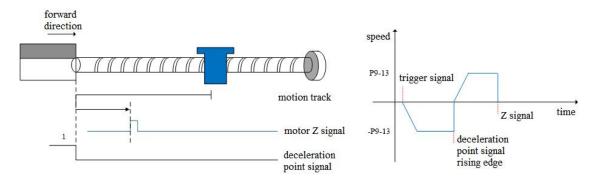
(d) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:


Run in reverse at the low speed set by -P9-13 (homing low speed), then stop immediately after encountering the rising edge of the first Z-phase signal, and then walk a quantitative pulse (it can run in positive direction or negative direction, but it must be within the mechanical limit position) at the speed set by -P9-12 (homing high speed) according to the set number of mechanical offset pulses after complete stop, and then the motor stops.

8. Homing mode 7—reverse homing, deceleration point and origin are reverse mechanical limit position (P9-11.2=7)


To use this mode, no need to connect POT, NOT and origin switch.

Firstly, the servo motor runs in reverse direction with the low speed -P9-13 (homing low speed). After hitting the mechanical limit position, if the absolute value of torque reaches the upper torque limit of P9-17 (touch stop homing mode torque threshold), and the absolute value of speed is lower than the set value of P9-16 (touch stop homing mode speed threshold), this state remains P9-18 (touch stop homing mode time threshold). After the set time, it is judged that the mechanical limit position is reached, and the next action of returning to the origin can be divided into four cases:


(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0: Shut down immediately.

The servo motor stops immediately. After it stops completely, the motor moves forward a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (high speed back to the origin) according to the set number of mechanical offset pulses, and then the motor stops.

(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0: Operate in the forward direction at the low speed P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal.

(d) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

Operate in the forward direction with low-speed P9-13 (homing low-speed), and then stop immediately after encountering the rising edge of the first Z-phase signal. After complete stop, the motor will walk a fixed pulse (P9-19, P9-20) at the speed set by P9-12 (homing high-speed) according to the set number of mechanical offset pulses (it can operate in positive direction or negative direction, but it must be within the mechanical limit position), and then the motor stops.

Note: only for homing mode 6 and 7.

For homing modes 6 and 7, once these two homing modes are triggered, the maximum torque during homing is 1.1 times of the set value of P9-17 (touch stop homing torque threshold). If the internal forward and reverse torque limits P3-28 and P3-29 are smaller than 1.1 times of the set value of P9-17 (touch stop homing torque threshold), the torque limit is the set value of P3-28 and P3-29. Similarly, if the external forward and reverse torque limits P3-30 and P3-31 are enabled, the actual torque limit is the minimum of the internal torque limit, the external torque limit and 1.1 times of the P9-17 set value.

Only when these two homing modes are triggered, 1.1 times of the set value of torque limit P9-17 (touch stop homing torque threshold) will take effect. If only the homing is enabled and (homing mode) P9-11.2 is 6 or 7, but the homing is not triggered, 1.1 times of the set value of torque limit P9-17 (touch stop homing torque threshold) will not take effect.

5.4.2 Position control (external pulse command)

DS5C2 series only 15kW model support this function.

Parameter	Overview	Reference chapter
P0-01 control mode selection	Set to 6: external pulse mode	<u>5.4.2.1</u>
P0-10 pulse instruction form	Set the pulse form	<u>5.4.2.3</u>
	0-CW/CCW	
	1-AB	
	2-P+D	
P0-11 Motor pulse numbers per rotation*1	Setting of command pulse number required	<u>5.4.1.1</u>
P0-12 Motor pulse numbers per	for one revolution of motor	
rotation*10000	P0-11 and P0-12=0, P0-13/P0-14 are	
P0-13 Electronic gear ratio (numerator)	effective	
P0-14 Electronic gear ratio (denominator)	P0-11~P0-14 are 0, P0-92~P0-95 are	
P0-92~P0-93 32-bit electronic gear ratio	valid	
(numerator)	32-bit electronic gear ratio (numerator):	
P0-94~P0-95 32-bit electronic gear ratio	P0-92*1 + P0-93 *10000	
(denominator)	32-bit electronic gear ratio denominator:	
	P0-94*1 + P0-95 *10000	
P0-09 Pulse command setting	You can set the command direction and	<u>5.4.2.5</u>
	filter time of low-speed pulse respectively	

5.4.2.1 External pulse position mode

Parameter	Setting value	Meaning	Modify	Effective
P0-01	6	Control the position by external pulse	Servo OFF	At once

5.4.2.2 Pulse input specification

Pulse specification		Max input frequency	Voltage	Forward current
Low speed	Open collector signal	200Kpps	24V	<25mA
pulse	Differential signal	500Kpps	3.3~5V	<25mA

5.4.2.3 Pulse command form selection

Set the pulse form received by the servo driver based on the upper computer or other pulse output devices:

- Double pulse (CW+CCW);
- A phase+B phase orthogonal pulse, 4-time frequency;
- Pulse+direction (positive or negative logic).

Parameter	Meaning	Setting	Meaning	Modify	Take effect
DO 10	Pulse	0	CW, CCW mode		
P0-10	command	1	AB phase	Servo OFF	At once
n.xxx□	form	2	Pulse + direction (default)		
P0-10	Pulse	0	Falling edge is effective (default)		
n.xx□x	signal effective edge	1	Rising edge is effective	Servo OFF	At once

5.4.2.4 Pulse command logic form

P0-10.0	Forward rotation	Reverse rotation
0: CW/CCW	69996-01h 69996-02h Index Pulse Positive Limit — Negative direction Desirve direction — Homing on positive limit switch and index pulse	Index Polar Index
1: AB	90° Phase A	90° Phase A
	Phase B	Phase B
2: P+D	pulse	pulse
	direction ON	direction OFF

5.4.2.5 Pulse command forward direction selection

Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P0-09.0	forward direction	0	_	0/1	Servo	Re-power
n.xxx□	of pulse instruction	0	-	0/1	OFF	on

P0-09 will change the counting direction of the internal counter in the servo system. The counting direction determines the rotation direction of the motor. Therefore, this parameter can be adjusted if the actual rotation direction of the motor is different from the expected direction in the position mode.

Pa	rameter	Meaning	Default setting	Unit	Range	Change	Effective
	0-09.2 n.x□xx	Pulse command filter time	2	4.167ns	0~4	Servo OFF	Re-power on

Pulse filtering time can enhance the anti-interference ability of low-speed pulses (within 200K).

P0-09.2=0: Turn off the noise filter;

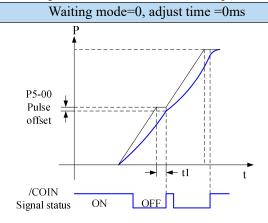
P0-09.2=1-4: Turn on the noise filter to filter out pulses with a pulse width less than 30*4^(n-1) ns.

5.4.3 Position control (Internal command)

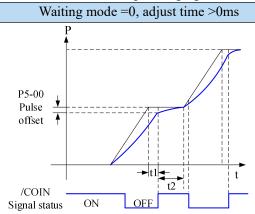
Parameter	Overview	Reference chapter
P0-01 control mode selection	Set to 5: internal position mode	5.4.3.1
P4-03 internal position mode P4-04 valid segment number P4-10~P4-254 internal position 1 to 35 parameters	Control mode setting of internal position mode: including step change mode, positioning mode and adjustment time Configuration of pulse displacement, speed, acceleration and deceleration time of each segment	5.4.3.3
P5-35 change step signal/GHGSTP P5-32 pause present segment signal /INHIBIT P5-31 jump present segment signal /Z-CLAMP	Common terminal function assignment	5.4.3.4 5.4.1.4 5.4.3.5
P4-00 number of Z-phase signal after leaving limit switch P4-01 speed of hitting the proximity switch P4-02 speed of leaving proximity switch P5-28 /SPD-A: find reference origin on forward side in position mode P5-29 /SPD-B: find reference origin on reverse side in position mode	Internal position back to origin setting parameters	5.4.1.8
F2-09 35 segments position setting	Set segment no. by communication	5.4.3.6

5.4.3.1 Internal position mode

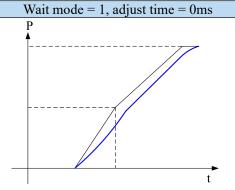
Parameter	Setting value	Meaning	Change	Effective
P0-01	5	Position control by preset values of internal registers in servo units	Servo bb	At once

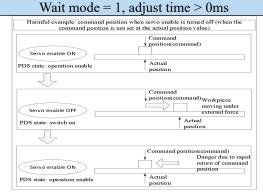

5.4.3.2 Internal position mode setting

Parameter	Function	Unit	Default setting	Suitable mode	modify	Effective	
	Internal position mode setting		n.0000	5	Servo bb	At once	
	Parameter setting	Meaning	Default setting	Setting range			
	n.□XXX		No meaning				
P4-03	n.x□xx	Waiting mode	0	0~1			
	n.xx□x	Change step mode	0	0~6			
	n.xxx□	Positioning mode	0	0~1			

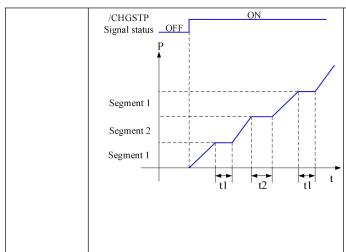

1. waiting mode

n.x□xx	Meaning
0	Wait for positioning completion
1	Not wait for positioning completion

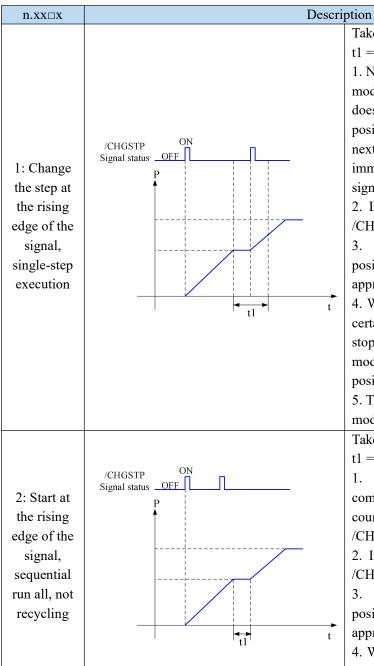

Note: Waiting mode refers to whether the driver waits for the motor to be positioned after outputing a position instruction in internal position mode. It takes effect in all Step-Changing modes.


After the drive output 1-segment position command, it will wait for the completion of motor positioning, and then start the next position command at once. T1 is positioning time, which means the time from pulse output complete to the output of positioning completion signal.

After the drive output 1-segment position command, it will wait for the completion of motor positioning, and pass the adjust time, then start the next position command. T1 is positioning time, t2 is adjust time. Refer to parameter P4-16.


After the drive output 1-segment position command, it will not wait for the completion of motor positioning, and start the next position command at once.

After the drive output 1-segment position command, it will not wait for the completion of motor positioning, but pass the adjust time, and then start the next position command. T2 is adjust time. Refer to parameter P4-16.


2. change step mode

n.xx□x	Description				
	t1=P4-16, t2=P4-23.				
	1. If the /CHGSTP signal is always on,				
0: Change	the servo unit will cycle the set position				
the step	segment all the time.				
when signal is ON, recycling	2. If the /CHGSTP signal is set to off				
	when executing a certain segment, the				
	servo will continue to complete the				
	execution of that segment without the				

execution of the next segment.

- 3. In this mode, the step change signal /CHGSTP is triggered at high level.
- 4. When the servo enable is off during a certain section of operation, the motor stops according to the servo off shutdown mode. After the shutdown, the positioning is invalid.
- 5. After each operation completion, positioning completion and positioning approach signal are all effective.
- 6. In this mode, the adjustment time of each period is valid.

Take setting two segments as an example, t1 = p4-16 in the figure.

- 1. Note that as shown in the figure, in this mode, the set adjustment time actually does not work. As long as the previous position command has been sent out, the next command will be entered immediately when a new step change signal arrives.
- 2. In this mode, the step change signal /CHGSTP is triggered by rising edge.
- 3. After each operation completion, positioning completion and positioning approach signal are all effective.
- 4. When the servo enable is off during a certain section of operation, the motor stops according to the servo off shutdown mode. After the shutdown, the positioning is invalid.
- 5. The adjustment time is not valid in this mode.

Take setting two segments as an example, t1 = p4-16 in the figure.

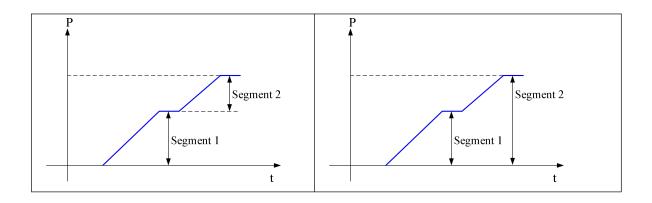
- 1. The /CHGSTP signal before the completion of a cycle will not be counted, as shown in the second /CHGSTP signal in the figure.
- 2. In this mode, the step change signal /CHGSTP is triggered by rising edge.
- 3. After each operation completion, positioning completion and positioning approach signal are all effective.
- 4. When the servo enable is off during a certain section of operation, the motor

stops according to the servo off shutdown mode. After the shutdown, positioning is invalid. 5. The adjustment time is valid in this mode. 3: set segment no. Servo is ON, set parameter P2-09=0, then set the running segment. The motor will run through the setting segment. Refer to chapter 5.4.3.6 communica tion t1 = p4-16 in the figure. 1. /CHGSTP rising edge triggers the first segment and falling edge triggers the second segment. Where, if the first segment position is required to operate completely, the /CHGSTP signal remains on until the end of the first segment. /CHGSTP Signal status OFF 2. Only in this mode, the number of p4-04 valid segments is invalid. 3. After each operation completion, 4: positioning completion and positioning /CHGSTP approach signal are all effective. double edge 4. When the servo enable is off during a triggering certain section of operation, the motor stops according to the servo off shutdown mode. After the shutdown, positioning is invalid. 5. The adjustment time is not valid in this mode. 6. Before using this mode, p5-35 terminals need to be allocated first, but not when using this mode. /PREFC /PREFB /PREFA Segment no. 0 0 1 (segment 1 position) 0 0 1 /PREFA(P5 0 1 2 (segment 2 position) -57) 3 (segment 3 position) /PREFB(P5 1. After each operation completion, positioning completion and positioning approach -58) signal are all effective. /PREFC(P5 2. When the servo enable is off during a certain section of operation, the motor stops -59) according to the servo off shutdown mode. After the shutdown, the positioning is Choose the invalid. segment 3. The adjustment time is valid in this mode. through 4. /CHGSTP signal is invalid only in this mode. terminal, 5. The segment number selection terminal can not only trigger the step change at the the range is edge, but also keep on state. This mode supports continuous and repeated triggering of a segment certain segment. If the segment number selection terminal remains on, the motor stops 1~3 after encountering the overtravel signal, it is necessary to change the segment number selection terminal to off, otherwise, the motor will execute the position segment after the overtravel signal is cancelled.

6:
/PREFA(P5
-57)
/PREFB(P5
-58)
/PREFC(P5
-59)
/PREFD(P5
-60)
Choose the
segment
through
terminal,
the range is
segment
1~16.

_						
	/PREFD	/PREFC	/PREFB	/PREFA	Segment no.	
	0	0	0	0	1 (segment 1 position)	
	0	0	0	1	2 (segment 2 position)	
	0	0	1	0	3 (segment 3 position)	
	0	0	1	1	4 (segment 4 position)	
	0	1	0	0	5 (segment 5 position)	
	0	1	0	1	6 (segment 6 position)	
Ī	0	1	1	0	7 (segment 7 position)	
	0	1	1	1	8 (segment 8 position)	
Ī	1	0	0	0	9 (segment 1 position)	
Ī	1	0	0	1	10 (segment 2 position)	
Ī	1	0	1	0	11 (segment 3 position)	
Ī	1	0	1	1	12 (segment 4 position)	
Ī	1	1	0	0	13 (segment 5 position)	
Ī	1	1	0	1	14 (segment 6 position)	
Ī	1	1	1	0	15 (segment 7 position)	
Ī	1	1	1	1	16 (segment 8 position)	

Note: the rising edge of P5-35 step change signal triggers each position (the rising edge is invalid during operation).


- 1. When the servo enable is off during a certain section of operation, the motor stops according to the servo off shutdown mode. After the shutdown, the positioning is invalid.
- 2. The adjustment time is not valid in this mode.
- 3. After each operation completion, positioning completion and positioning approach signal are all effective.
- 4. After the segment number is selected, the rising edge of P5-35/CHGSTP step change signal is required to trigger to run the position segment, and the step change triggering during segment operation is invalid.
- 5. Segment number selection terminal logic is voltage level valid. Input high voltage level is valid, input low voltage level is invalid.

The following input signal can switch the segment 1 to 3 or 1 to 16:

Parameter	Signal name	Default	Suitable	Setting range	Modify	Effective
		setting	mode			
	/PREFA internal			Range 0000-0014,		
P5-57	position	n.0000	5	distribute to input terminal		
	segment 1			through P5-57		
	/PREFB internal			Range 0000-0014,		
P5-58	position	n.0000	5	distribute to input terminal		
	segment 2			through P5-58	Anytime	At once
	/PREFC internal			Range 0000-0014,	Anytime	At once
P5-59	position	n.0000	5	distribute to input terminal		
	segment 3			through P5-59		
	/PREFD			Range 0000-0014,		
P5-60	internal position	n.0000	5	distribute to input terminal		
	segment 4			through P5-60		

3. Positioning mode

n.xxx□	Meaning				
0	Relative positioning				
1	Absolute positioning				
0: relative positioni	1: absolute positioning ng (take the reference origin as the absolute positioning origin)				

5.4.3.3 Position segment 1 to 35 parameter settings

Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P4-10+ (n-1) *7 Pulse number (low bit)		0	1 pulse	-9999~9999	Anytime	At once
P4-11+ (n-1) *7	Pulse number (high bit)	0	10000 pulses	-32767~32767	Anytime	At once
P4-12+ (n-1) *7 Speed		0	0.1rpm	0~65535	Anytime	At once
P4-13+ (n-1) *7	Trapezoid acceleration time	0	ms	0~65535	Anytime	At once
P4-14+ (n-1) *7	Trapezoid deceleration time	0	ms	0~65535	Anytime	At once
P4-15+ (n-1) *7	Reserved			-		
P4-16+ (n-1) *7	Adjust time	0	ms	0~65535	Anytime	At once

Notes:

- 1. Set pulse number = pulse number (high bit) $\times 10000$ + pulse number (low bit).
- 2. In formula P4-10+(n-1)*7, n is the segment no. of internal position; the range is $1\sim35$. Segment $1\sim12$ can be set through the operate panel, segment $13\sim35$ needs to write in parameters through communication (RS232 or RS485).
- 3. In the relative positioning mode, if the pulse high position is set to 9999, the pulse low position is set to 9999, or the pulse high position is set to 9999, and the pulse low position is set to 9999, and p4-03.3 = 1 (do not wait for the positioning to be completed), the infinite pulse mode will be entered. On the contrary, the number of pulses is limited.
- 4. If one of the segment speed is zero, servo will skip this segment and run the next segment.
- 5. In relative positioning mode, if one segment speed is not zero but the pulse number is zero, the motor will not run, but the wait mode is effective. The servo will run the next segment when the adjust time is out.
- 6. In absolute positioning mode, if one segment speed is not zero but the pulse number is zero, the motor will return to the reference origin with the speed of this segment.
- 7. In absolute positioning mode, if two consecutive segments speed are not zero, but the pulse number is the same, the servo motor will not run but the wait mode is effective.
- 8. In the absolute positioning mode, the number of rotations of the motor is limited and cannot be unlimited.
- 9. At present, there are only two kinds of velocity in the internal position mode: step speed and slope speed. When the trapezoidal acceleration time and trapezoidal deceleration time are set to 0, it is in the form of step speed. When the trapezoidal acceleration time and trapezoidal deceleration time are greater than 0, it is in the form of slope speed.
- 10. Trapezoidal acceleration time and trapezoidal deceleration time refer to the time required to change from 0 to rated speed.
- 11. If the speed of a certain parameter set is 0, the position command of this section will be ignored in the step change mode of 0/1/2. However, in the mode of 4/5/6, the motor does not rotate when the step change is triggered at this section.

- 12. In the internal position section parameters, the position commands of pulse settings are still affected by the electronic gear ratio. The actual number of turns of the motor should be determined by combining the set pulse command and the electronic gear ratio.
- 13. In the absolute positioning mode, the starting position of each step change is based on the starting position of the first triggering step change. In the relative positioning mode, the starting position of each step change is based on the position at the end of the last step change.
- 14. In the relative positioning mode, the infinite pulse position segment can be set in the 35 segment positions. The motor will run continuously in this segment, unless the trigger skips the current segment.

Parameter	Meaning	Default setting	Range	Change	Effective
P4-04	Effective segment	0	0~35	Servo bb	At once

There are 35 sections in total in the internal position. If 10 sections need to be operated and 5 sections need to be operated switched for use due to process requirements, the effective segment can be set. For example, parameters are set for sections 1-10, and P4-04 is set to 5, that is, the position of section 1-5 is valid; if it is set to 10, the position of section 1-10 is valid.

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P4-08	Internal position mode start segment number	1	-	0~35	Servo bb	At once

P4-08 sets the starting operation section number after the first round, and it is valid when the change mode P4-03.1 is set to 0 and 1. The settings are explained below, and valid values are set for No.1-No.8 sections.

Change step mode	Setting	Parameter	Actions
P4-03.1=0	P4-08=0 or P4-08>P4-04	P4-08=8 P4-04=4	start Segment Segment Segment Segment Segment 3 4
	1≤P4-08≤P4-04	P4-08=2 P4-04=4	start Segment Segment Segment Segment 3 4
P4-03.1=1		P4-08=8 P4-04=4	Segment Segment Segment end 1 2 3 4
	1≤P4-08≤P4-04	P4-08=2 P4-04=4	start Segment Segment Segment Segment 3 4

When using skip current segment function, the SI terminal assigned by P5-31 needs rising edge trigger.

5.4.3.4 Change step signal (/CHGSTP)

Parameter	Name	Setting	Meaning	Range
P5-35	Change step signal /CHGSTP	n.0000	Defaulted is not distribute to input terminal. Refer to chapter 5.4.3.2.	Range: 0000-0014. Distribute to input terminal through P5-35. When it set to 0001, it means input from SI1.

5.4.3.5 Skip present segment signal (/ZCLAMP)

Parameter	Signal name	Setting	Meaning	Range
P5-31	Skip the present segment /Z-CLAMP	n.0000	Defaulted is not distribute to input terminal.	Innut terminal through P5-31 When

In different Step-Changing modes, the function of skipping the current segment will have different effects, as follows:

Change step mode P4-03 n.xx□x	Skip the present segment	Actions		
0		Cancel current segment, execute the next segment at once		
1		Cancel current segment, execute the next segment when the change step signal is ON		
2		Cancel current segment, execute the next segment at once		
3	/Z-CLAMP	Cancel current segment, set the F2-09 again		
4	/Z-CLAWIF	The current segment is cancelled and the next segment is executed on the falling edge of the /CHGSTP step change signal		
5		If the current segment is cancelled, the corresponding segment will be executed after selecting other segments		
6		The current segment is cancelled, the selected position segmen is executed at the rising edge of /CHGSTP step signal		

5.4.3.6 Set segment through communication

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
F2-09	Set the segment number through communication	0	-	0~35	Anytime	At once

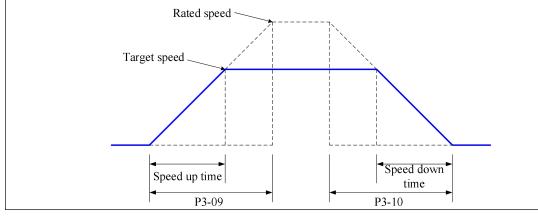
If this parameter is set to a certain segment number, this segment position will be executed without step change signal. Communication can be used to modify parameters. For example: to execute the second segment position, set F2-09 = 0, and then F2-09 = 02.

5.4.3.7 Motion start signal (/MRUN)

Parameter	Signal name	Default setting	Meaning	Modify		
P5-50	Motion start /MRUN	n.0000	Terminal output is not assigned by default. It is only valid in the internal position mode, similar to the positioning completion signal in the external pulse mode; there is output when the motor is running, and there is no output when the motor stops.	Parameter range 0000-0014, assigned to the output interface through parameter P5-50. When it is set to 0001, the signal is output from SO1 terminal.		

5.5 Speed control

5.5.1 Speed mode general control


5.5.1.1 Soft start

Parameter	Meaning	Defaulted setting	Unit	Range	Modify	Effective
P3-09	Soft Start Acceleration Time	200	ms	0~65535	Servo bb	At once
P3-10	Soft Start deceleration Time	200	ms	0~65535	Servo bb	At once

Soft start acceleration and deceleration time is suitable for mode 3/4/7. Smooth speed control can be carried out when step speed instruction is input or internal setting speed is selected.

P3-09: Time from stop to rated speed

P3-10: Time from rated speed to stop

5.5.1.2 Zero clamp (/ZCLAMP)

1. Overview

This function is used when host controller uses speed command input and the servo system isn't configured the position loop. In other words, the function will be used when the motor must stop and enter lock state even the V-REF input voltage is not zero.

When set ON the zero clamp function, it will configure the position loop inside the servo, the motor will do zero clamp within ± 1 pulse at this position. The motor will return to zero clamp position even it is run by external force

The present speed must be smaller than zero clamp speed when using zero clamp function, it can clamp the motor shaft from moving. The motor will switch from speed mode to position mode when starting the zero clamp function. At this time, rotate the motor shaft, it will return to the original position. It will not return to original position in speed mode, because it has no position feedback.

2. Input signal setting

Parame ter	Signal	Setting	Meaning	Range
P5-31	Zero clamp	n.0000 (default)	Defaulted is not distribute to input terminal	distributed to input
P3-31	/ZCLAMP	n.0002	Input signal from SI2 terminal	terminal by parameter P5-31, Range: 0000-0014.

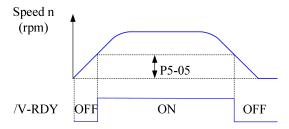
3. Parameter setting

parameter Mea	ng Default setting	Unit	Range	Change	Effective
---------------	--------------------	------	-------	--------	-----------

P3-13	Zero clamp speed	10	rpm	0~300	Servo bb	At once
P3-12	Zero clamp mode	0	-	0~3	Servo bb	At once

P3-12 setting	Contents
0	ZCLAMP input signal is ON, forced speed command is 0, when the speed below P3-13, switch to position mode and the servo lock in this position.
1	ZCLAMP input signal is ON, forced set the speed command to 0.
2	ZCLAMP input signal is ON, the speed below P3-13, switch to position mode and the servo lock in the position. Note: after entering zero clamp mode, present setting speed is higher than P3-13, motor doesn't run, the ZCLAMP signal must be OFF, then motor will run again.
3	ZCLAMP signal is ON, the setting speed is less than P3-13, switch to position control mode, and servo is locked at this position. At this time, if setting speed is over P3-13, the motor will run again.

5.5.1.3 Speed reach signal (/V-RDY)

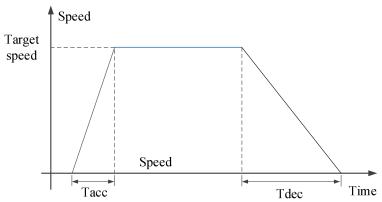

Related parameter

Parameter	Signal	Default setting	Suitable mode	Meaning	Modify	Effective
P5-51	/V-RDY	n.0000	3, 4, 7	Speed reach signal	Anytime	At once

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P5-05	Reach speed	1000	rpm	0~10000	Anytime	At once

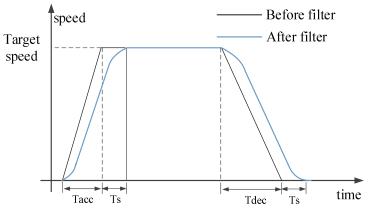
Speed arrival signal output condition

When the actual motor speed is greater than P5-05, output speed reach signal (/V-RDY).

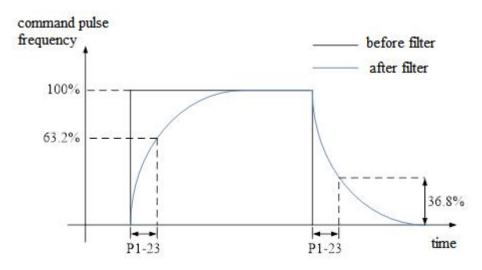


5.5.1.4 Speed command filter

■ Related parameter


Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P1-23	Speed command filter time	0	0.1ms	0~65535	Servo bb	At once
P3-09	Acceleration time	200	1ms	0~65535	Servo bb	At once
P3-10	Deceleration time	200	1ms	0~65535	Servo bb	At once
P3-11	Moving average filtering time constant	0	0.1ms	0~65535	Servo bb	At once

Firstly, set P3-09 and P3-10. Plan the speed command acceleration and deceleration time.


Among them, the acceleration time Tacc=(target speed/rated speed) * P3-09 [ms], and the deceleration time Tdec=(target speed/rated speed) * P3-10 [ms].

Set an appropriate sliding average filtering time constant P3-11 (S-type acceleration and deceleration time constant). Ts=P3-11*0.1 [ms].

Note: The setting of the sliding average filtering time constant must meet the requirements, Ts<0.5 * Tacc, Ts<0.5*Tdec. Otherwise, excessive sliding average filtering time will result in an increase in deceleration time, which does not comply with the settings of P3-09 and P3-10.

When P3-09 and P3-10 are set to 0, setting the sliding average filtering time will change the speed command into a trapezoidal acceleration/deceleration speed command. Set P1-23 (speed command filtering time constant) and P1-24 (first-order low-pass filtering time constant), and the effect is as follows:

Note: If acceleration and deceleration are set, the first-order low-pass filtering will increase the lag of the speed command.

5.5.2 Speed control (internal speed)

Parameter	Overview	Chapter
P0-01 Control mode selection	Set to 3: internal speed control mode	5.5.2.1
P3-05 Internal speed 1	Speed value setting of internal 3-segment speed	5.5.2.1
P3-06 Internal speed 2	in rpm	
P3-07 Internal speed 3		
P5-28 internal speed selection /SPD-A	The combination of terminals determines the	5.5.2.1
P5-29 internal speed selection /SPD-B	speed of corresponding section	
P5-27 internal speed direction selection	Direction changing, default is n.0000	5.5.2.1
/SPD-D	If the direction changing is given through SI2	
	terminal, P5-27 can be set to n.0002	
P3-09 soft start acceleration time	Set acceleration and deceleration time in ms	5.5.1.1
P3-10 soft start deceleration time		

5.5.2.1 Internal speed mode

Parameter	Set value	Meaning	Modify	Effective				
	value							
P0-01	3	Speed control: internal speed selection	Servo bb	At once				
Function: ir	Function: internal speed selection will set 3 motor speeds and select the speed by external signal. It is							
1	no need to	configure external speed generator or pulse generator.						
		Servo unit						
Inpu	$t \begin{cases} /SPI \\ /SPI \\ /SPI \end{cases}$		M Servo motor	r				

No need external speed or pulse generator

-		
1	▼ Speed selection	Servo motor
	SPEED1 P3-05	
	SPEED2 P3-06	
	SPEED3 P3-07	Run the motor
	User parameter	at set speed

Related parameter

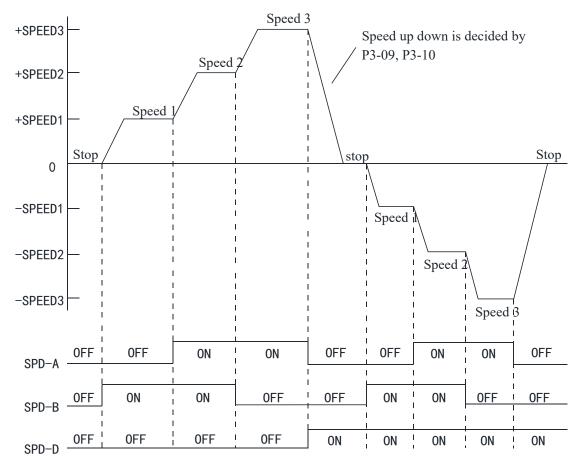
	Parameter	Meaning	Defaulted setting	Unit Range		Modify	Effective
	P3-05	Internal speed 1	0	rpm	-9999~+9999	Anytime	At once
İ	P3-06	Internal speed 2	0	rpm	- 9999~+9999	Anytime	At once
	P3-07	Internal speed 3	0	rpm	-9999~+9999	Anytime	At once

Parameter	Signal	Default setting	Range	Modify	Effective
P5-27	Internal direction /SPD-D	n.0000	Range: 0000-0014. Distribute to input terminal through P5-27.		
P5-28	Internal speed /SPD-A	n.0000	Range: 0000-0014. Distribute to input terminal through P5-28.	Anytime	At once
P5-29	Internal speed /SPD-B	n.0000	Range: 0000-0014. Distribute to input terminal through P5-29.		

1. Correlation between running speed and terminal signal

	Input signal		Dynning speed	
SPD-D (P5-27)	SPD-A (P5-28)	SPD-B (P5-29)	Running speed	
	0	0	Internal speed is zero	
0. f 1	0	1	P3-05: SPEED1	
0: forward run	1	1	P3-06: SPEED2	
	1	0	P3-07: SPEED3	
	0	0	Internal speed is zero	
1	0	1	P3-05: SPEED1	
1: reverse run	1	1	P3-06: SPEED2	
	1	0	P3-07: SPEED3	

Note:


- (1) /SPD-D signal is direction control, input SI terminal can be changed according to P5-27. The validity of the terminal signal determines the direction of the motor.
- (2) The combination of /SPD-A and /SPD-B input terminal effectiveness determines the multi segment speed
- (3) 0/1 of the above table represent the validity of the signal. The 0-bit terminal input is invalid. 1 is the terminal input valid.

2. Terminal effectiveness description

The following table takes /SPD-D as an example, /SPD-A, /SPD-B signals are the same.

Parameter setting	Signal/SPD-D terminal input status	Signal/SPD-D terminal logic
P5-27=n.0000	No need external terminal input	
P5-27=n.000□	SI□ terminal no signal input	Invalid
P5-27=n.001□	SI□ terminal has signal input	
P5-27=n.0010	No need external terminal input	
P5-27=n.000□	SI□ terminal has signal input	Valid
P5-27=n.001□	SI□ terminal no signal input	

3. Running example

5.5.3 Speed control (pulse frequency command)

DS5C2 series only 15kW model support this function.

Parameter	Overview	Reference chapter
P0-01 Control mode selection	Set to 7: external pulse speed mode	5.5.3.1
P0-10 Pulse command form	Set pulse form	5.3.2.2
	0-CW/CCW	
	1-AB	
	2-P+D	
P0-15 Command pulse frequency at	Determine the linear relationship between the	5.5.3.3
rated speed	command pulse frequency and the speed	
P0-16 Speed command pulse filter	When the command pulse frequency is relatively	5.5.3.4
time	low, setting this parameter properly can reduce the	
	speed fluctuation	
P5-71 Function selection of		5.5.3.5
direction terminal in pulse speed	change the pulse direction	
mode		

5.5.3.1 External pulse speed mode

Parameter	Setting value	Meaning	Modify	Effective
P0-01	7	Speed control: pulse frequency speed command	Servo bb	At once

Function: speed command is decided by external pulse frequency, but not related to pulse quantity. The wiring is the same as position command. Select CW, CCW mode or direction + pulse mode, AB phase pulse mode.

5.5.3.2 Pulse frequency command

Pulse frequency command is the same as external pulse command position control, refer to chapter 5-3-2.

5.5.3.3 Command pulse frequency at rated speed

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P0-15	command pulse frequency at rated speed	1000	100Hz	0~10000	Servo bb	At once

Note: the unit is 100Hz.

Example: P0-15=300, command pulse frequency at rated speed=30kHz;

P0-15=1000, command pulse frequency at rated speed= 100kHz.

5.5.3.4 Speed command pulse filter time

Parame ter	Meaning	Default setting	Unit	Range	Modify	Effective
P0-16	speed command pulse filter time	100	0.01ms	0~10000	Servo bb	At once

When the command pulse frequency is low, setting a suitable value for this parameter can decrease the speed fluctuation.

5.5.3.5 Speed command pulse direction

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P5-71	Function selection of direction terminal in pulse speed mode	0	-	0~1	Servo bb	At once

5.6 Torque control

Parameter	Overview	Reference chapter
P0-01 Control mode selection	Set to 1: internal torque mode	5.6.1
P3-33 Internal torque command	The given value is the percentage of rated torque	5.6.1.1
P3-16 Internal forward speed limit of torque control P3-17 Internal reverse speed limit of torque control P3-14 Forward max speed limit (MAX speed) P3-15 Reverse max speed limit (MAX speed)	Speed limit in torque mode	5.6.2.1
P5-27 Speed direction switch /SPD-D	Change the direction, default is n.0000 If it is given through SI2 terminal, P5-27 can be set to n.0002	

5.6.1 Torque control (internal setting)

Parameter	Set value	Function	Modify	Effective			
P0-01	1	Torque control: internal setting	Servo bb	At once			
Function: Control the torque by internal torque command.							

5.6.1.1 Internal torque command

Parame ter	Meaning	Default setting	Unit	Range	Modify	Effe ctive
P3-33	Preset torque 1	0	1% rated torque	-1000~+1000	Anytime	At once

The unit of this parameter is 1% of the rated torque. Positive and negative values correspond to the forward and reverse rotation of the motor.

For example: P3-33=50, motor forward run with 50% of the rated torque;

P3-33= -20, motor reverse run with 20% of the rated torque.

In addition to using the torque to control the direction of servo operation, it can also use / SPD-D to control the direction.

5.6.1.2 Internal speed limit of torque control

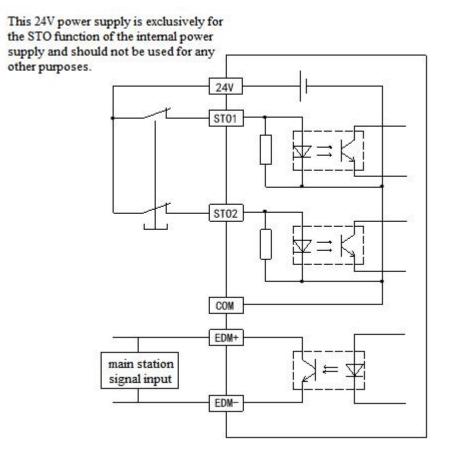
Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P3-16	internal forward speed limit in torque control mode	Motor rated	rpm	5~65535	Anytime	At once
P3-17	internal reverse speed limit in torque control mode	Motor rated	rpm	5~65535	Anytime	At once

Note: Even if the setting speed of this parameter is greater than the speed limit of P3-14, the actual effective speed limit is the lower speed limit. (The maximum speed is the smaller value in P3-14/P3-15 and P3-16/P3-17)

5.6.1.3 Speed reach signal output (/VLT)

In torque mode, when the absolute value of the actual speed of the servo motor exceeds the speed limit value, it is considered that the actual speed of the servo motor is limited. At this time, the servo driver can output /VLT signal. Otherwise, if any condition is not met, the speed limit signal is invalid.

Parameter	Signal name	Default setting	Suitable mode	Meaning	Modify	Effective
P5-43	/VLT	n.0000	1, 2	Speed limit detection	Anytime	At once


By default, no terminal is allocated, the parameter range is 0000-0014, and is allocated to the output interface through parameter P5-43. When set to 0002, the signal is output from the SO2 terminal. /VLT signal is only valid in torque mode.

5.7 STO safe torque off

5.7.1 STO function overview

STO (Safe Torque Off) function: refers to the safety function of cutting off motor current through hardware. The STO safety function terminal (CN5) adopts a dual circuit design, with two safety signal input channels STO1 and STO2. If either terminal is triggered, it will enter the STO state. Through an independent circuit, it prevents the power module that controls the motor current from outputting PWM control signals, thereby cutting off the motor current and achieving a torque free state.

5.7.2 STO wiring diagram

5.7.3 STO parameters

Parameter	Name	Unit	Range	Effective	Function	Default
P0-88	STO synchronous detection configuration	100us	0-1000	At once	STO asynchronous alarm detection time	60
P0-89.0~1	STO buffer circuit Abnormal alarm detection filtering	100us	0-255	At once	STO buffer circuit Abnormal alarm detection filtering time	32
P0-89.2~3	STO input detection filtering	100us	10-30	At once	STO input detection filtering	12
P0-90.0~1	EDM circuit abnormality alarm	100us	0-255	At once	EDM circuit abnormality alarm detection filtering	200

5.7.4 STO working principle

STO triggering

The driver can only operate normally when both the input signals of STO1 and STO2 terminals are at high level. In addition, when an STO alarm occurs, the current STO status can be determined based on the EDM output signal status, as shown in the table below:

STO1 input	STO2 input	EDM output status	PWM control signal
Н	Н	No output	Normal
Н	L	No output	Prohibited
L	Н	No output	Prohibited
L	L	With output	Prohibited

When either STO1 or STO2 is at a low level, the servo enters the STO state. At this time:

- (1) PWM control signal prohibition;
- (2) The servo stops as the turn off enable mode in P0-29 alarm stop mode;
- (3) The servo/S-RDY signal output is 0;
- (4) The panel displays STO.

When both STO1 and STO2 are at low levels, the EDM output circuit becomes conductive;

When the status of STO1 and STO2 is inconsistent and the time exceeds the set time of P0-88, alarm E-340: STO status is not synchronized.

Ensure that the STO1 and STO2 pins do not respond to pulses below 1ms, and ensure that it responds to the pulse higher than the setting in P0-89.2-3.

An alarm occurs in the STO state, and the panel displays the alarm information. However, the servo is still in the STO state at this time, and the dynamic braking and holding brake configurations are configured according to the STO state.

■ STO release

When both STO1 and STO2 terminals are at high level and the enable signal is in a non enable state, the STO state is released, the servo ready output signal/S-RDY is output according to P5-70 configuration, the dynamic braking is output according to P0-27 or P0-29 configuration, and the holding brake is output according to the effectiveness of the enable signal/S-ON.

5.7.5 STO function precautions

After the STO function is activated, the motor safely enters a torque free state, and the servo drive will no longer have control over the motor. Therefore, before using the STO function, please evaluate the hazards that still exist after the STO function is enabled:

- After the STO function is enabled, the servo cannot guarantee that the motor will move due to external forces, such as the vertical axis;
- The STO function cannot cut off the power supply of the servo unit. The strong electrical part of the driver is still charged, so there is still a risk of electric shock or other electrical hazards. When

- maintaining the servo unit, please be sure to cut off the power supply and other devices of the servo unit:
- Please use the single power supply provided by the safety function terminal CN5 to supply power to the STO signal input, otherwise the STO function may malfunction due to leakage current, making it impossible to enter the STO cut-off state.

If the STO function is used to stop a running servo, the motor will gradually stop. If it is not acceptable, the system should use the correct stop mode instead of using the STO function to stop.

All cables suitable for STO function must have good protection, wiring, and fixation. During installation, it is necessary to ensure that the cables are not pulled or squeezed. The requirements for the cables used are as follows:

Cable	Explanation
requirements	
Type	Double shielded or single shielded twisted pair multiple pair cables
Max length	The maximum allowable cable length between the driver and safety switch is
	30m
Max size	0.8mm ² (18 AWG)
Min size	0.3mm ² (28 AWG)

5.8 Weak magnetic control

5.8.1 Weak magnetic function overview

The control method of servo driven permanent magnet synchronous motor, which operates above the rated speed by reducing the motor magnetic field while meeting the maximum voltage and current limits of the inverter, is called weak field control. Weak magnetic control can broaden the speed range of permanent magnet synchronous motors.

When using the weak magnetic function, the motor speed must not exceed the maximum motor speed to avoid motor failure or personal and property damage.

5.8.2 Weak magnetic related parameter settings

Servo weak magnetic control switch PE-01.3. 0 (default): indicates turning off the weak magnetic function, 1: indicates turning on the weak magnetic function.

When activating the weak magnetic function of the servo, it is necessary to match the correct motor parameters, such as back electromotive force coefficient, Ld, Lq, etc. For specific usage conditions and parameter settings, please contact the technical support.

Parameter	Name	Unit	Range	Effective	Default
PE-01.3	Weak magnetic control switch	_	0-1	Anytime	0
PE-80	Weak magnetic control gain Kv	Hz	10-1000	Anytime	30
PE-81	Weak magnetic control integration time constant Ti	%	10-1000	Anytime	16
PE-82	Weak magnetic control integral limit	%	0-200	Anytime	60
PE-83	Voltage command limit threshold	%	50-150	Anytime	115
PE-84	IdRef limit	%	50-150	Anytime	95
PE-85	Smooth filtering time of main cycle voltage	0.1ms	0-1000	Anytime	20

6 EtherCAT bus communication

6.1 EtherCAT technical overview

This section mainly introduces the basic concept, system composition, communication specifications and connection instructions of EtherCAT.

6.1.1 EtherCAT introduction

EtherCAT, the full name is Ethernet for Control Automation Technology, which is developed by Beckhoff Atuomation GmbH. It is a kind of real-time Ethernet used for open network communication between master station and slave station. As a mature industrial Ethernet technology, EtherCAT has the characteristics of high performance, low cost and easy to use.

XG2, XDH or XLH series controller (master station) and DS5C2 servo driver (slave station) comply with the standard EtherCAT protocol, supports the maximum 64-axis slave stations, 64-axis synchronization cycle is 4ms, supports touch probe function, position, speed, torque and other control modes, is widely applicable to various industries.

6.1.2 System composition(master and slave station)

The connection form of EtherCAT is: the network system of linear connection master station (FA controller) and multiple slave stations.

The number of nodes that can be connected by the slave station depends on the processing or communication period of the master station, the number of bytes transmitted, etc.

6.2 EtherCAT communication specification

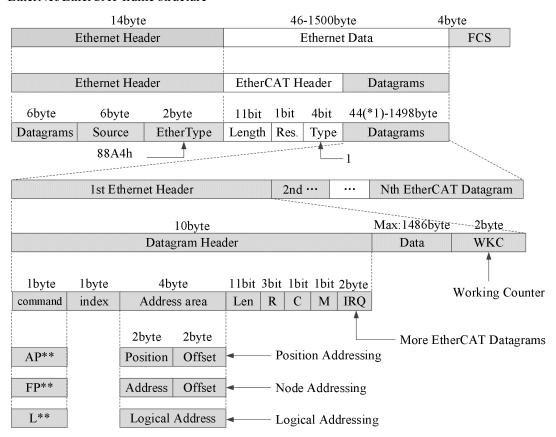
This section mainly introduces EtherCAT's frame structure, state machine, ESC, SDO, PDO, SII area, communication synchronization mode, etc.

6.2.1 Communication specification

Item	Specification					
Physical layer	100BASE-TX(IEEE802.3)					
Baud rate	100[Mbps](1	100[Mbps](full duplex)				
Topology	Line					
Connection cable				ield twisted pair)		
Cable length	Maximum 5	0m betwee	n node	S		
Com port	2 Port(RJ45))				
EtherCAT indicators (LED)	[L/A IN] Por		ctivity	indicator(Green) ty indicator(Green)		
Station Alias(ID)	Setting range Setting addre					
Explicit Device ID	Not support					
Mailbox protocol	COE(CANo	pen Over E	therC	AT)		
SyncManager	4					
FMMU	3					
				Modes of operation		
			Csp	Cyclic synchronous position mode		
		Position	PP	Profile position mode		
N. 1			Hm	Homing mode		
Modes of operation		Speed	Csv	Cyclic synchronous velocity mode		
		Speed	Pv	Profile velocity mode		
		Томаца	Cst	Cyclic synchronous torque mode		
		Torque	Tq	Torque profile mode		
Touch Probe	2 channels					
Touch Probe	2 channels					

Synchronization mode	DC(SYNCO event synchronization mode)			
Cyclic time	250, 500,1000,2000,4000, 8000, 10000[µs]			
(DC communication period)				
Communication object	SDO[service data object], PDO[process data object]			
Maximum PDO allocation per	TxPDO:4 [piece] RxPDO:4 [piece]			
station				
Single station PDO Max bytes	TxPDO:32[byte] RxPDO:32[byte]			
Mailbox communication	1ms			
interval in PreOP mode				
Mailbox	SDO request and SDO information			

Note:SDO and PDO refer to chapter 6.2.3 state machine.

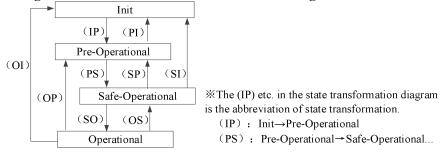

6.2.2 EtherCAT frame structure

EtherCAT is an industrial communication protocol based on real-time control of Ethernet. It only expands the IEEE 802.3 Ethernet specification and does not change the basic structure, so it can transmit the data within the standard Ethernet frame.

Because the EthernetType of the Ethernet Header is [88A4h], the subsequent Ethernet data is processed as the EtherCAT frame.

The EtherCAT frame is composed of the EtherCAT frame header and more than one EtherCAT sub message, which is further subdivided. Only the EtherCAT frame with type = 1 of the EtherCAT frame header is processed according to ESC.

EtherNet/EtherCAT frame structure


*1:When Ethernet frame is shorter than 64byte, add $1\sim32$ byte. (Ethernet Header + Ethernet Data + FCS)

6.2.3 State machine ESM

The EtherCAT state machine (ESM) is responsible for coordinating the state relationship between the master and slave applications at initialization and runtime.

The state change request is executed by the master station, and the master station puts forward the control request to the application layer service. The latter generates the application layer control event in the slave station, and the slave station responds to the application layer control service through the local application layer state write service after the state change request succeeds or fails. If the state change fails, the slave station keeps the state and shows the error flag.

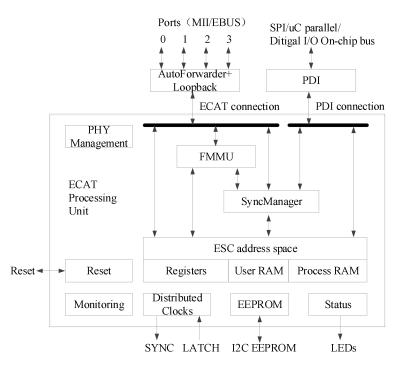
The figure below shows the state transformation diagram of ESM:

Init: Initialization status
Pre-Operational: Pre operation status
Safe-Operational: Safe operation status
Operational: Running state

		Communication action			
Slave station status	Actions in various states	SDO(mailbox) receive and send messages	PDO Send messages	PDO Receive messages	
Init	Communication initialization, SDO, PDO unable to receive and send messages	-	-	-	
Pre-Operational (PreOP)	Only SDO receives and sends messages	Yes	-	-	
Safe-Operational (SafeOP)	Only SDO receives and sends messages, PDO sends messages	Yes	Yes	-	
Operational (OP)	SDO receives and sends messages, PDO receives and sends messages	Yes	Yes	Yes	

Note: the access from the master station to the ESC register is independent of the above table and is available at any time.

PDO (Process Data Object) Used to transmit periodic communication data.


SDO (Service Data Object) Used to transmit aperiodic communication data.

Command or interface operation during ESM state switching may cause abnormal communication error

6.2.4 Slave station controller ESC

6.2.4.1 Principle overview

ESC refers to the EtherCAT slave controller. The communication process is completely processed by ESC, which has four data receiving and transmitting ports, each with a Tx and Rx. Each port can send and receive Ethernet data frames. The data flow direction in ESC is fixed: port $0 \rightarrow -port 3 \rightarrow port 1 \rightarrow port 2 \rightarrow port 0$ are transmitted in sequence. If ESC detects that a port has no external PHY, it will automatically close the port and forward to the next port through the internal loopback.

6.2.4.2 Address space

The DS5C2 series have 8 Kbyte of physical address space.

The first 4kbyte (0000h-0FFFh) is used as register space, and the other 4kbyte (1000h-1FFFh) is used as process data PDO in RAM field. For details of registers, please refer to the data table of IP (ET1810 / ET1811 / ET1812).

ESC Register byte address	Length (Byte)	Description	Initial value *1
	ESC Inf	formation (Slave controller information)	
0000h	1	Туре	04h
0001h	1	Revision	02h
0002h~0003h	2	Build	0040h
0004h	1	FMMUs supported	03h
0005h	1	SyncManagers supported	04h
0006h	1	RAM Size	08h
0007h	1	Port Descriptor	0Fh
0008h~0009h	2	ESC Features supported	0184h
		Station Address	·
0010h~0011h	2	Configured Station Address	-
0012h~0013h	2	Configured Station Alias	-
		•••	
		Data Link Layer	
0100h~0103h	4	ESC DL Control	-
			·
0110h~0111h	2	ESC DL Status	-
		Application Layer	·
0120h~0121h	2	AL Control	-
0130h~0131h	2	AL Status	-
0134h~0135h	2	AL Status Code	-
		PDI process data interface	
0140h	1	PDI Control	08h
0141h	1	ESC Configuration	0Ch

ESC Register byte address	Length (Byte)	Description	Initial value *1
0150h	1	PDI Configuration	-
0151h	1	SYNC/LATCH PDI Configuration	66h
0152h~153h	2	Extend PDI Configuration	-
		Watchdog	
0400h~0401h	2	Watchdog Divider	-
0410h~0411h	2	Watchdog Time PDI	-
0420h~0421h	2	Watchdog Time Process Data	-
0440h~0441h	2	Watchdog Status Process Data	-
0442h	1	Watchdog Counter Process Data	-
0443h	1	Watchdog Counter PDI	-
		FMMU	
0600h~062Fh	3x16	FMMUs[2:0]	-
+0h~3h	4	Logical Start Address	-
+4h~5h	2	Length	-
+6h	1	Logical Start bit	-
+7h	1	Logical Stop bit	-
+8h~9h	2	Physical Start Address	-
+Ah	1	Physical Start bit	-
+Bh	1	Туре	-
+Ch	1	Activate	-
+Dh~Fh	3	Reserved	-
	Distr	ributed Clocks(DC)-SYNC Out Unit	
0981h	1	Activation	-
0984h	1	Activation Status	-
098Eh	1	SYNCO Status	-
0990h~0993h	4	Start Time Cyclic Operation/Next SYNC0 Pulse	-
09A0h~09A3h	4	SYNC0 Cycle Time	-

6.2.5 SII area (0000h~003Fh)

In the ESC configuration area (EEPROM word address 0000h-0007h), after the power of the driver is started, the Configured Station Alias automatically reads and writes the ESC register according to ESC. When the value of SII EEPROM is reflected in the ESC register, the power supply needs to be started again. In addition, the initial value of IP core (ET1810 / ET1812) is set. Please refer to the data table of IP core (ET1810 / ET1811 / ET1812) for details.

6.2.6 SDO(Service Data Object)

DS5C2 series supports SDO (Service Data Object). The data exchange of SDO uses mailbox communication, so the data refresh time of SDO becomes unstable.

The master station reads and writes data in the records of the object dictionary, which can set the object and monitor various states of the slave station. The response to a read-write action to SDO takes time. For objects refreshed with PDO, please do not refresh with SDO, and overwrite with PDO value.

6.2.6.1 Mailbox frame structure

Mailbox/SDO frame structure is shown as below. Please refer to ETG specification book (ETG1000-5 and ETG1000-6).

Ethernet	Header	EthernC	АТ Неа	der	1st Ether	CAT Data	gram	2nd	•••	Nth	FCS

	10byte					Max:1486	byte				2byte
Datag	gram Heade	er	Mailbox Protocol			WKC					
			6byte		2byte		Max:1478byte				
			Mailb	ox He	ader	CoE Header		C	md Speci	fic	
16bit	16bit	6bit	2bit	4bit	4bit	9bit	3bit	4bit	M	ax:1478b	yte
Length	Address	Channel	Prio	Туре	Cnt	Number	Res	Serv	C	md Speci	fic

Frame	Data area	Data type	Function
	Length	WORD	Mailbox data length
	Address	WORD	Sending source station address
	Channel	Unsigned6	(Reserved)
	Prority	Unsigned2	Priority
	Type	Unsigned4	Mailbox type
			00h: error
			01h: (Reserved)
MailBox Header			02h: EoE (no response)
			03h: CoE
			04h: FoE (no response)
			05h: SoE (no response)
			06h-0Eh: (Reserved)
			0Fh: VoE (no response)
	Cnt	Unsigned3	Mailbox counter
	Reserved	Unsigned1	(Reserved)
	Number	Unsigned9	Reserved
CoE Header	Reserved	Unsigned3	Reserved
	Service	Unsigned4	Information type
	Size Indicator	Unsigned1	Data Set Size use license
	Transfer Type	Unsigned1	Normal Forwarding/Expedited Forwarding
	Data Set Size	Unsigned2	Specify data size
	Complete Access	Unsigned1	Object access method selection (not
Cmd specific			corresponding)
Cmd specific	Command Specfier	Unsigned3	Upload / download
			Selection of requirements / responses, etc
	Index	WORD	Object Index
	Subindex	BYTE	Object Subindex
			Object data or Abort message, etc.

6.2.6.2 Mailbox overtime

This servo driver performs the following timeout settings in mailbox communication.

Timeout of mailbox request: 100ms

The master station sends a request to the slave station (driver). If the WKC of the transmission data of the request frame is updated, the slave station is considered to receive the request normally. Until WKC is updated, retry again and again. However, if WKC is not updated until this set time, the master station will time out. Timeout for mailbox response: 10s

The master receives a response from a request from a slave (driver), which is considered normal if the WKC is updated. Until this set time, if the response of updated WKC cannot be received, the master station will time out. The maximum time required for the response of the slave (driver) to complete.

6.2.6.3 Alarm information

1) Error code

Error code returns the same value as 603Fh (Error code).

0000h~FEFFh are defined as IEC61800-7-201.

FF00h~FFFFh are defined by manufacturer, shown as below.

Index	Sub-index	Name/Description	Range	Data type	Access	PDO	Op-mode
603Fh	00h	Error code	0-65535	U16	ro	TxPDO	All
		Now the alarm of the	Now the alarm of the servo driver (only the main number).				
		When the alarm does i	When the alarm does not occur, it will display 0000H.				
		When an alarm occurs, an alarm is displayed.					
		FF**h					
		Alarm (main) code (00h~FFh)					
		Eg. FF03h 03h=3d	E-030 (ove	er voltage protect	ion)		
		FF55h55h=85d E-850 (TxPDO configuration error protection), E-851 (RxPDO					
		configuration error pro	configuration error protection), any of them occurred.				
		As an exception, A000)h is displaye	d in the case of E	E-817 (Syncma	nager 2/3 sett	ing error).

2) Error register

Error register returns same value as 1001h (Error register).

EHOLIC	Error register returns same value as 1001n (Error register).							
Index	Sub-index	Name/Descr	iption	Range	Data type	Access	PDO	Op-mode
1001h	00h	Error regi	ister	0-65535	U16	ro	TxPDO	All
		Displays the ty	ype of ala	arm (status) tha	at is occurring	to the servo d	lriver.	
		When the alar	m does n	ot occur, it wil	l display 0000	Н.		
		Do not display	warning	gs.	2 0			
		Bit	Bit Contents					
		0						
		1	Not support					
		2						
		3						
		4	AL status code defined alarm occured *1					
		5		Not	t support			
		6		Re	eserved			
		7	AL status code defined alarm occured*2					
		*1:"AL status code defined alarm" means EtherCAT communication related error E-800 ~						
		7, E-810~7, E-850~7.						
		*2:"AL status	s code r	not defined al	arm" means	EtherCAT co	mmunication	related error
		E-880 \sim 7 and	except E	EtherCAT com	munication rel	ated error.		

6.2.7 PDO(Process Data object)

DS5C2 series supports PDO (process data object).

The real-time data transfer based on EtherCAT is carried out through the data exchange of PDO (process data object).

PDO has RxPDO transferred from master station to slave station and TxPDO transferred from slave station to master station.

	Send	Receive
RxPDO	Main station	Slave station
TxPDO	Slave station	Main station

6.2.7.1 PDO mapping objects

PDO mapping refers to the mapping from object dictionary to application object of PDO.

Tables for DS5C2 series PDO mapping can use 1600h-1603h mapping objects for RxPDO and 1A00h-1A03h mapping objects for TxPDO.

The maximum number of application objects that a mapping object can map is as follows:

RxPDO: 32 [byte], TxPDO: 32 [byte]

The following is an example of setting up a PDO map.

< Setting example >

Allocation of application objects 6040h, 6060h, 607ah, 60b8h to 1600h (receive PDO mapping 1: RxPDO 1).

Index	Sub	Object contents			
1600h	00h	04h			
	01h	6040 00 10 h			
	02h	6060 00 08 h			
	03h	607A 00 20 h			
	04h	60B8 00 10 h			
	05h	0000 00 00 h			
	18h	0000 00 00 h			
6040h	00h	Controlword	U16		
6060h	00h	Mode of operation	I8		
607Ah	00h	Target Position	I32		
60B8h	00h	Touch probe function	U16		

6.2.7.2 PDO distribution objects

In order to exchange PDO data, a table for PDO mapping must be assigned to SyncManager. The relationship between the table used for PDO mapping and SyncManager is described to PDO allocation object. DS5C2 series, as PDO allocation object, can use 1C12h for RxPDO (SyncManager2) and 1C13h for TxPDO (SyncManager3). The maximum number of application objects that a mapping object can map is as follows:

RxPDO: 4 [Table] $(1600h \sim 1603h)$

RxPDO: $4 [Table](1A00h \sim 1A03h)$

Generally, since one mapping object is enough, no change is required by default.

Example of setting PDO assignment object:

Allocation mapping object 1600h to allocation object 1C12h (Sync Manager Channel 2).

Index	Sub	Object contents
1C12h	00h	01h
	01h	1600h
	02h	0000h
	03h	0000h
	04h	0000h

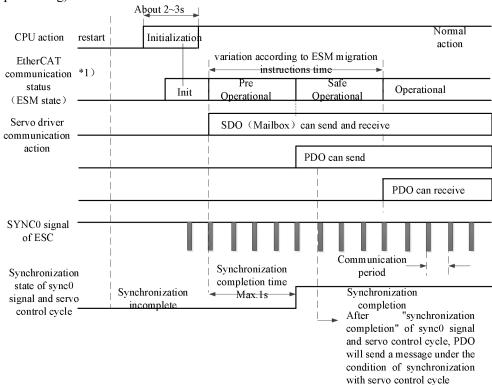
Allocation mapping object 1600h to allocation object 1C13h (Sync Manager Channel 3).

Index	Sub	Object contents
1C13h	00h	01h
	01h	1A00h
	02h	0000h
	03h	0000h
	04h	0000h

6.2.8 Communication synchronization mode

DS5C2 series can select the following synchronization modes.

DSSC2 SCITC	s can select the folio	wing syncinomization modes.	
Synchronization	Contents	Synchronization methods	Features
modes			
DC	SYNC0 Event	Synchronize the time	High-precision
	synchronization	information of other slave	Compensation treatment shall be carried out
		stations based on the time	at the main station
		of the first axis	
SM2	SM2 Event	Synchronize according to	No transmission delay compensation, poor
	synchronization	RxPDO's receiving time	accuracy
			Need to keep transmission time on controller
			side (special hardware, etc.)


FreeRun	Asynchronous	Asynchronous	Simple handling
			Poor real-time performance

6.2.8.1 DC(SYNC0 event synchronization)

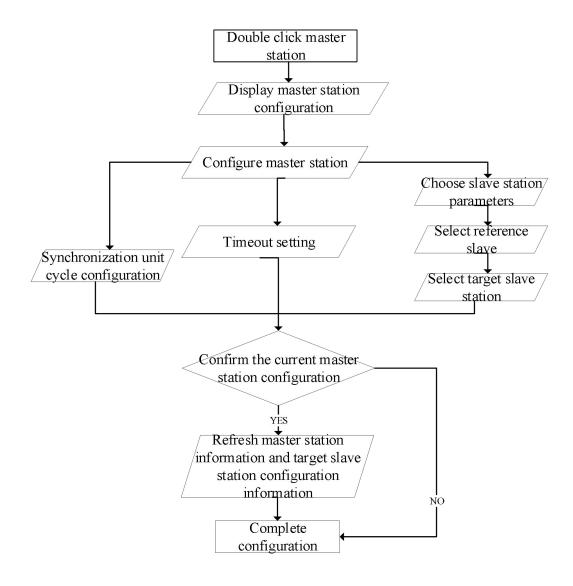
DS5C2 series have 64bit DC (Distributed Clock).

The synchronization of EtherCAT communication is based on this DC. According to the DC slave station, synchronization is realized through the system time with the same reference. The local cycle of the slave station starts with the SYNC0 event. Since the slave processing (servo processing) starts from the SYNC0 event cycle, it is always synchronized with the SYNC0 event.

The master station needs to carry out transmission delay compensation (offset compensation) and regular deviation compensation during communication initialization. The following figure shows the process of synchronous completion from the input of control power to the event of SYNC0 and the processing of slave station (servo processing).

6.2.8.2 SM2(SM2 event synchronization)

The local cycle of the slave station starts with SM2 events.

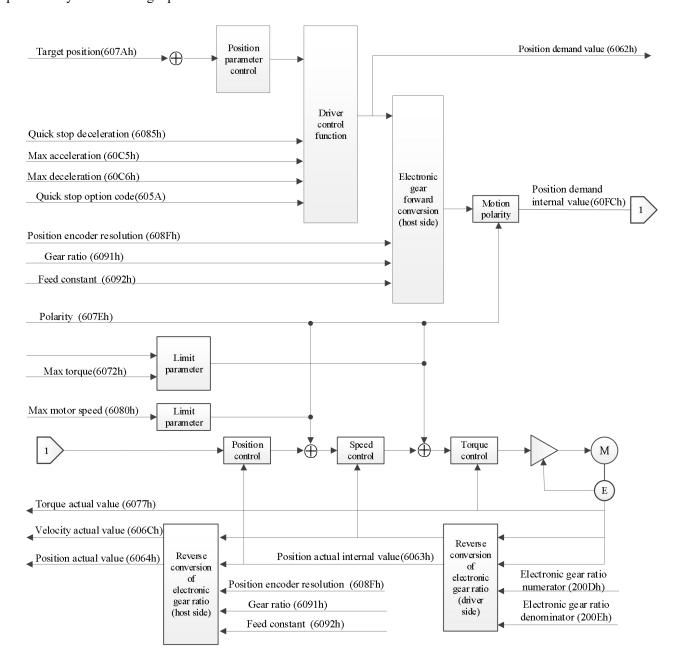

Since the processing of the slave station starts from the SM2 event cycle, it is always synchronized with SM2 events.

Because SM2 event occurs when PDO receiving is completed, it is necessary to ensure that the upper (Master) side sends the message regularly. If the fluctuation (deviation) of sending time is too large, synchronization cannot be completed, or an alarm occurs.

If this happens, please use DC (SYNC0 event synchronization).

7 EtherCAT bus control mode

7.1 EtherCAT operation



The following table shows the parameters that must be configured uniformly in CSP, CSV, CST, PP, PV and TQ modes.

Register	Explanation
RXPDO[0x6040]	Controlword must be added to the PDO configuration. It is invalid to modify it through IO
	mapping in CSP, CSV and CST modes. It is controlled by the NC module
RXPDO[0x6060]	Modes of operation, must be added to the PDO configuration, and can be modified by IO
	mapping in the task mode.
RXPDO[0x607A]	Target position, the given location of the program, must be added to the PDO configuration
TXPDO[0x6041]	Statusword, must be added to PDO configuration
TXPDO[0x6061]	Modes of operation display, must be added to PDO configuration
TXPDO[0x6064]	Position actual value, must be added to PDO configuration
TXPDO[0x606C]	Velocity actual value, must be added to PDO configuration

7.2 CSP mode

CSP (periodic synchronous position mode), whose motion trajectory is calculated by the upper computer, periodically sends the target position to the slave station.

7.2.1 Related parameters

1)CSP Control mode associated object(Command · setting)

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6040h	00h	Control word	-	0~65535	U16	rw	RxPDO

Other positions control common associated objects.

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6072h	00h	Max torque	0.1%	0~65535	U16	rw	RxPDO
607Ah	00h	Target position	Command	-2147483648~	I32	rw	RxPDO
			unit	2147483647			
607Dh	-	Software position limit	-	-	-	-	-

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
	00h	Number of entries	-	2	U8	ro	No
	01h	Min position limit	Command	-2147483648~	I32	rw	RxPDO
		_	unit	2147483647			
	02h	Max position limit	Command	-2147483648~	I32	rw	RxPDO
			unit	2147483647			
607Fh	00h	Max profile velocity	Command	0~4294967295	U32	rw	RxPDO
			unit/s				
6080h	00h	Max motor speed	r/min	0~4294967295	U32	rw	RxPDO
60B1h	00h	Velocity offset	Command	-2147483648~	I32	rw	RxPDO
			unit/s	2147483647			
60B2h	00h	Torque offset	0.1%	-32768~32767	I16	rw	RxPDO

Other related objects with common actions

Index	Sub-inde	Name	Unit	Range	Data type	Access	PDO
	X				71.5		3.7.0
605Ah	00h	Quick stop option code	-	0~7	I16	rw	NO
605Bh	00h	Shutdown option code	-	0~1	I16	rw	NO
605Ch	00h	Disable operation option code	-	0~1	I16	rw	NO
605Dh	00h	Halt option code	-	1~3	I16	rw	NO
605Eh	00h	Fault reaction option code	-	0~2	I16	rw	NO
607Dh	-	Software position limit	-	-	-	-	-
	00h	Number of entries	-	2	U8	ro	No
	01h	Min position limit	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
	02h	Max position limit	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
607Ch	00h	Home offset	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
607Eh	00h	Polarity	-	0~255	U8	rw	NO
6085h	00h	Quick stop deceleration	Command unit/s ²	0~4294967295	U32	rw	RxPDO
6086h	00h	Motion profile type	-	-32768~32767	I16	rw	RxPDO
608Fh	-	Position encoder resolution	-	-	-	-	-
	00h	Number of entries	-	2	U8	ro	No
	01h	Encoder increments	pulse	1~4294967295	U32	ro	No
	02h	Motor revolutions	r(motor)	1~4294967295	U32	ro	No
6091h	-	Gear ratio	-	-	-	-	-
	00h	Number of entries	-	2	U8	ro	No
	01h	Motor revolutions	r(motor)	1~4294967295	U32	ro	No
	02h	Shaft revolutions	r(shaft)	1~4294967295	U32	ro	No
6092h	-	Feed constant	-	-	-	-	-
	00h	Number of entries	_	2	U8	ro	No
	01h	Feed	Command unit	1~4294967295	U32	ro	No
	02h	Shaft revolutions	r(shaft)	1~4294967295	U32	ro	No
60B8h	00h	Touch probe function	_	0~65535	U16	rw	RxPDO

Controlword(6040h) < functions in CSP control mode>

Index	Sub-index	Name	Unit	Range	Data type	PDO	Op-mode
		Control word	0~65535	U16	Rw	RxPDO	All
6040h	00h	Set the control Bit information		r the servo driv	er such as PDS	S state convers	ion.

Index	Sub-index	Name	J	Jnit	Rang	e	Data	type	P]	DO	Op-	mode
		15	14	13	12	11		10		9	8	
					R					om	h	
		7	6	5		4		3	2	1	0	
		fr			oms			eo	qs	ev	so	
			r		r		r					
		r = reserv	ved(not con	rrespond	ing)	fr=	fault r	eset				-
		oms = op	eration mo	ode speci	ific		= enab		ation			
		(control i	(control mode is based on bit) $qs = quick stop$									
		h = halt							age			
		so = swit	ch on									

CSP mode does not use oms bit.

2) realted CSP control mode (monitor)

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6041h	00h	Statusword	-	0~65535	U16	ro	TxPDO

Other associated objects with common position control

Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
6062h	00h	Position demand value	Command	-2147483648~	I32	ro	TxPDO
			unit	2147483647			
6063h	00h	Position actual internal value	pulse	-2147483648~	I32	ro	TxPDO
				2147483647			
6064h	00h	Position actual value	Command	-2147483648~	I32	ro	TxPDO
			unit	2147483647			
6065h	00h	Position deviation too large	Command	0~4294967295	U32	rw	RxPDO
		threshold	unit				
6066h	00h	Following error time out	1ms	0~65535	U16	rw	RxPDO
6067h	00h	Position window	Command	0~4294967295	U32	rw	RxPDO
			unit				
6068h	00h	Position window time	1ms	0~65535	U16	rw	RxPDO
606Ch	00h	Velocity actual value	Command	-2147483648~	I32	ro	TxPDO
			unit/s	2147483647			
6074h	00h	Torque value	0.1%	-32768~32767	I16	ro	TxPDO
6076h	00h	Motor rated torque	Mn·m	0~4294967295	U32	ro	TxPDO
6077h	00h	Torque actual value	0.1%	-32768~32767	I16	ro	TxPDO
60F4h	00h	Following error actual value	Command	-2147483648~	I32	ro	TxPDO
			unit	2147483647			
60FAh	00h	Control	Command	-2147483648~	I32	ro	TxPDO
			unit/s	2147483647			
60FCh	00h	Position demand internal value	pulse	-2147483648~	I32	ro	TxPDO
				2147483647			

There are other related objects common to actions.

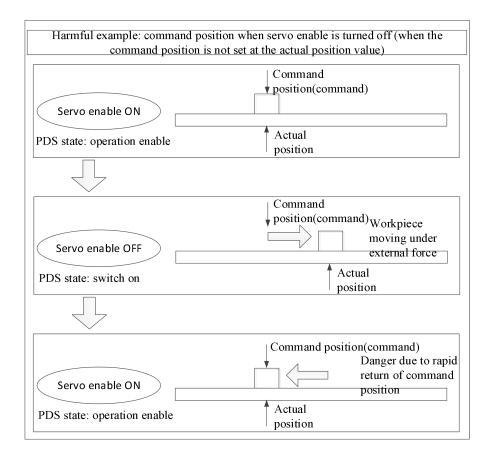
Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
603Fh	00h	Error code	-	0~65535	U16	ro	TxPDO
60B9h	00h	Touch probe status	-	0~65535	U16	ro	TxPDO
60BAh	00h	The rising edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 1	unit	2147483647			
60BBh	00h	The falling edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 1	unit	2147483647			
60BCh	00h	The rising edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 2	unit	2147483647			

60BDh	00h	The falling edge clamping	Command	-2147483648	I32	ro	TxPDO
		position of Touch probe 2	unit	~2147483647			

Statusword (6041h) < functions in csp control mode >

Index	Sub-index			ime		ange	Data type	Acce	SS	PE	Ю	Op-	mode
6041h	00h		Statu	sword	0~6	55535	U16	Ro		TxP	DO	1	All
		Serve	o drive	er status								•	
		Bit in	nforma	ition									
		15	15 14 13 12							10	9	8	
			r oms							oms	rm	r	
			Following error Drive follow Command value							r			
		7	6	5			4		3	2	1	0	
		w	sod	qs			Ve		f	oe	so	rsto	
		1		d(not correspo	_	g)	$\mathbf{w} = \mathbf{w}$	arning					
				h on disabled									
		1	-	ation mode sp				uick stop					
		`		ode is based of	,			oltage e	nable	:d			
			a = internal limit active $f = fault$										
		oe =	operation enabled										
		rm =	remot	e			so = s	witched	on				
		rtso =	= read	y to switch on	l								

bit13,12,10(operation mode specific):

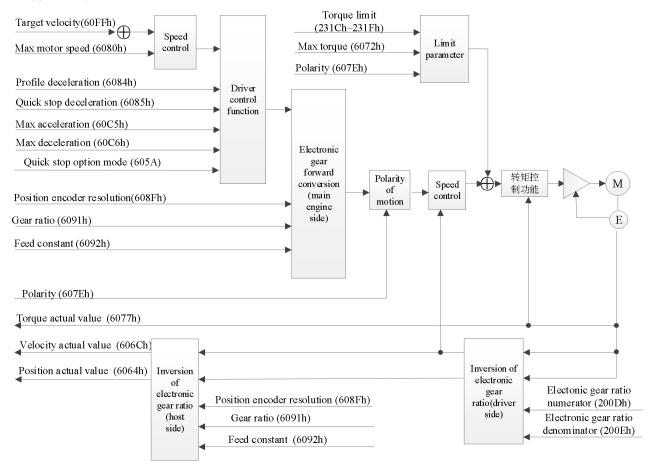

Bit	Name	Value	Definition
10	Reserved	-	unuse
12			No action based on target location
	acknowledge	1	Perform actions based on target location
13	Following error	0	60F4h (Following error actual value) = 6062h (Position demand value) – 6064h (Position actual value) is over the setting range of 6065h (Following error window) or 60F4h value is over the setting value of 6065h, not through the setting time of 6066h.
		1	60F4h (Following error actual value) is over the setting range of 6065h (Following error window) and above the setting time of 6066h (Following error time out)

Note: the "performing actions according to the target position" means that if all the following conditions are met:

- ◆ PDS status is operation enabled
- Not in deceleration process(Halt, Quick stop, Shutdown, Disable operation, Fault)
- ♦ Non Halt stop status

Actions in CSP control mode

- The cyclic position control mode is to generate the action model (track) through the host rather than the slave.
- ◆ The target position is the sum of 607Ah (target position) and 60B0h (position offset), which is understood as absolute position.
- ◆ The update (sending) of action command is that after the servo enable command (operation enabled command), please input after about 100 ms.
- ♦ 60C2h (interpolation time period), which means updating the period of 607AH (target position) and 60B0h (position offset). This value is set to the same period as 1C32h-02h (cycle time). The upper device (host) must update the target position through 60C2h (interpolation time period).
- ◆ The servo enable can be turned off. Please form 607Ah (target position) + 60B0h (position offset) to follow the host processing of 6064h (position actual value). If the motor moves by external force during the servo enable is turned off, if the servo enable is turned on next time, it is very dangerous because it needs to return to the input target position. In addition, when switching from control mode other than CSP control mode to CSP control mode, please also do the follow operation.



7.2.2 Common parameters

Register	Explanation	Unit
RXPDO[0x607A]	Target position, modification via IO mapping in CSP mode is invalid, which	Command
KAFDO[0x00/A]	is controlled by NC module	unit
TXPDO[0x6064]	Position feedback (motor actual position)	Command
		unit
TXPDO[0x606C]	Velocity feedback	Command
		unit/s
RXPDO[0x6060]	Control mode is CSP (Periodic synchronization position mode), set to 8	-

7.3 CSV mode

CSV (periodic synchronous speed mode) enables the motor to run at a constant speed through the speed given by the upper computer.

7.3.1 Related parameter

1)CSV Object associated with control mode (Command · setting)

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6040h	00h	Control word	-	0~65535	U16	rw	RxPDO
607Fh	00h	Max profile	Command	0~4294967295	U32	rw	RxPDO
		velocity	unit/s				

Other objects that are commonly associated with speed control.

Other ob	jeets that are	commonly associat	ca with speed c	onuoi.			
Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6072h	00h	Max torque	0.1%	0~65535	U16	rw	RxPDO
6080h	00h	Max motor	r/min	0~4294967295	U32	rw	RxPDO
		speed					
60B1h	00h	Velocity offset	Command	-2147483648~	I32	rw	RxPDO
			unit/s	2147483647			
60B2h	00h	Torque offset	0.1%	-32768~32767	I16	rw	RxPDO
60FFh	00h	Target velocity	Command	0~4294967295	U32	rw	RxPDO
			unit/s				

Other related objects with common actions.

Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
605Ah	00h	Quick stop option code	-	0~7	I16	rw	NO
605Bh	00h	Shutdown option code	-	0~1	I16	rw	NO
605Ch	00h	Disable operation option	-	0~1	I16	rw	NO
		code					

Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
605Dh	00h	Halt option code	-	1~3	I16	rw	NO
605Eh	00h	Fault reaction option code	-	0~2	I16	rw	NO
607Bh	-	Position range limit	-	-	-	-	-
	00h	607Bh sub index numbers	-	2	U8	ro	NO
	01h	Min position limit	Command	-2147483648~	I32	rw	RxPDO
			unit	2147483647			
	02h	Max position limit	Command	-2147483648~	I32	rw	RxPDO
			unit	2147483647			
607Ch	00h	Home offset	Command	-2147483648~	I32	rw	RxPDO
			unit	2147483647			
607Eh	00h	Polarity	-	0~255	U8	rw	NO
6085h	00h	Quick stop deceleration	Command	0~4294967295	U32	rw	RxPDO
			unit/s²				
6086h	00h	Motion profile type	-	-32768~32767	I16	rw	RxPDO
608Fh	-	Position encoder resolution	-	-	-	-	-
	00h	608Fh sub index numbers	-	2	U8	ro	NO
	01h	Encoder increments	pulse	1~4294967295	U32	ro	NO
	02h	Motor revolutions	r(motor)	1~4294967295	U32	ro	NO
6091h	-	Gear ratio	-	-	-	-	-
	00h	6091h sub index numbers	-	2	U8	ro	NO
	01h	Motor revolutions	r(motor)	1~4294967295	U32	ro	NO
	02h	Shaft revolutions	r(shaft)	1~4294967295	U32	ro	NO
6092h	-	Feed constant	-	-	-	-	-
	00h	6092h sub index numbers	-	2	U8	ro	NO
	01h	Feed value	Command unit	1~4294967295	U32	ro	NO
	02h	Shaft revolutions	r(shaft)	1~4294967295	U32	ro	NO
60B8h	00h	Touch probe mode	-	0~65535	U16	rw	RxPDO

Controlword(6040h) < Function in csy control mode >

Index	Sub-index	N	lame		Unit	Range	D	ata type	e A	Access	PDO	
		Controlword		0	~65535	U16		rw		xPDO	All	
		Set the co Bit inform		mand for	r the servo	driver such a	s PDS	S state c	onver	sion.		
		15	14	13	12	11	1	0	9	8		
					R				om	h		
6040h	00h	7	6	6 5			3	2	1	0		
004011	OOH	fr			oms	e		qs	ev	so		
				r		r	r					
		r = reserve	ed(not cor	respondi	ing)	fr = fault re	set					
		oms = ope	ration mo	de speci	ific	eo = enable operation						
		(control m	ode is bas	sed on bi	it)	qs = quick	-					
	h = halt ev = enable volta					age						
		so = switc	h on									

Csv mode doesn't use oms bit.

2)Objects associated with CSV control mode (monitoring)

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6041h	00h	Statusword	-	0~65535	U16	ro	TxPDO

Other related objects common to speed control.

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6063h	00h	Position actual	pulse	-2147483648~	I32	ro	TxPDO
		internal value		2147483647			
6064h	00h	Position feedback	Command	-2147483648~	I32	ro	TxPDO

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
			unit	2147483647			
606Bh	00h	Velocity command	Command	-2147483648~	I32	ro	TxPDO
		-	unit/s	2147483647			
606Ch	00h	Velocity feedback	Command	-2147483648~	I32	ro	TxPDO
			unit/s	2147483647			
6074h	00h	Torque command	0.1%	-32768~32767	I16	ro	TxPDO
6076h	00h	Motor rated torque	Mn⋅m	0~4294967295	U32	ro	TxPDO
6077h	00h	Torque feedback	0.1%	-32768~32767	I16	ro	TxPDO

Other associated objects that share the same mode.

Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
603Fh	00h	Error Code	-	0~65535	U16	ro	TxPDO
60B9h	00h	Touch probe status	ı	0~65535	U16	ro	TxPDO
60BAh	00h	The rising edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 1	unit	2147483647			
60BBh	00h	The falling edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 1	unit	2147483647			
60BCh	00h	The rising edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 2	unit	2147483647			
60BDh	00h	The falling edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 2	unit	2147483647			

Statusword (6041h) < Function of csv control mode >

Status	014 (00 1111)	1 0,111	otion o	1 05, 00	ond mode						
Index	Sub-index		Nam	e	Unit	Range	Data	a type	Acc	ess	PDO
6041h	00h	S	Status v	vord	0~65535	U16		ro	TxP	DO	All
		Servo	driver	status.							
		Bit in	Bit information								
		15					11	10	9	8	
			r		oms		ila	oms	rm	r	
				r	follow drive co	mmand vaule		r	1		
		7	6	5	4		3	2	1	0	
		w	sod	qs	Ve	e	f	oe	so	rsto	
		r = res	served(not cor	responding)	w = warnin	g				•
		sod =	switch	on disa	abled						
		oms =	opera	tion mo	de specific	qs = quick	stop				
		(contr	ol mod	le is bas	sed on bit)	ve = voltag	ge ena	bled			
		ila = i	= internal limit active $f = fau$			f = fault					
		oe = 0	oe = operation enabled								
		rm = 1	remote			so = switch	ned or	ı			
		rtso =	ready	to switc	ch on						

bit13.12.10(operation mode specific):

- 010	15,12	,10(operation ii	reac speem	<i>5)</i> .
Е	3it	Name	Value	Definition
1	10	Reserved	-	Unuse
1	12	Reserved	0	Action not performed according to target speed
		Reserved	1	Perform the action according to the target speed
1	13	Reserved	-	Unuse

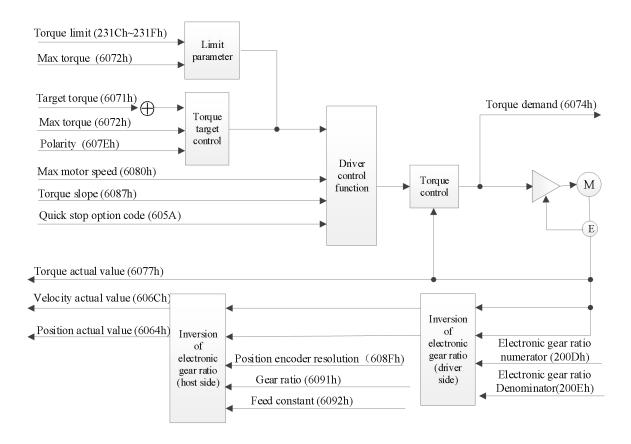
The "performing actions according to target speed" should meet the following conditions:

- The PDS status is operation enabled
- Not in deceleration processing (halt, quickstop, shutdown, disable operation, falut)
- It is not a halt state.
- The torque limit does not occur

Actions in CSV control mode

• In the cyclic speed control mode, the motion model (trajectory) is generated not on the slave but on the

master.


- The target speed is 60FFh (target velocity)
- The update (sending) of action command is that after the operation enabled command, please input it after about 100 ms.
- 60C2h (interpolation time period) means the period of updating 60FFh (target velocity) and 60B1h (velocity offset). This value is set to the same period as 1C32h-02h (cycle time).
- As monitoring information, provide 606Ch (velocity actual value), etc.
- The 60FFh (target velocity) value is limited by 6080h (max motor speed).

7.3.2 Common parameters

Register	Explanation	Unit
RXPDO[0x60FF]	Target velocity	Command unit/s
TXPDO[0x6064]	Position feedback	Command unit
TXPDO[0x606C]	Velocity feedback	Command unit/s
RXPDO[0x6080]	Max motor speed, which can be modified through COE-Online	r/min
RXPDO[0x6060]	Control mode is CSV (Periodic Synchronous Speed Mode), set its value to 9	-

7.4 CST mode

CST (periodic synchronous torque mode) allows the motor to run at a constant torque through the torque given by the upper computer.

7.4.1 Related parameter

1)Objects associated with CST control mode (Command · setting)

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6040h	00h	Controlword	-	0~65535	U16	rw	RxPDO

Other related objects with common torque control.

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6071h	00h	Target torque	0.1%	-32768~32767	I16	rw	RxPDO
6072h	00h	Max torque	0.1%	0~65535	U16	rw	RxPDO
6080h	00h	Max motor speed	r/min	0~4294967295	U32	rw	RxPDO
6087h	00h	Torque slope	0.1%/S	0~4294967295	U32	rw	RxPDO
60B2h	00h	Torque offset	0.1%	-32768~32767	I16	rw	RxPDO

Other related objects with common actions.

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
605Ah	00h	Quick stop option code	-	0~7	I16	rw	NO
605Bh	00h	Shutdown option code	-	0~1	I16	rw	NO
605Ch	00h	Disable operation	-	0~1	I16	rw	NO
		option code					
605Dh	00h	Halt option code	-	1~3	I16	rw	NO
605Eh	00h	Fault reaction option	-	0~2	I16	rw	NO
	OOH	code					
607Bh	-	Position range limit	-	-	-	-	1
	00h	607Bh sub index	-	2	U8	ro	NO

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
		numbers					
			Command	-2147483648	I32	rw	RxPDO
	01h	Min position limit	unit	~			
				2147483647			
			Command	-2147483648	I32	rw	RxPDO
	02h	Max position limit	unit	~			
				2147483647			
607Ch			Command	-2147483648	I32	rw	RxPDO
	00h	Home offset	unit	~			
				2147483647			
607Eh	00h	Polarity	-	0~255	U8	rw	NO
6085h	00h	Quick stop deceleration	Command	0~429496729	U32	rw	RxPDO
	OOH	Quiek stop deceleration	unit / s²	5			
6086h	00h	Motion profile type	-	-32768~3276	I16	rw	RxPDO
	OOH			7			
608Fh		Position encoder	-	-	-	-	-
	_	resolution					
	00h	608Fh sub index	-	2	U8	ro	NO
	OOH	numbers					
	01h	Encoder increments	pulse	1~429496729	U32	ro	NO
	OIII	Encoder increments		5			
	02h	Motor revolutions	r(motor)	1~429496729	U32	ro	NO
	0211	Wiotor revolutions		5			
6091h	-	Gear ratio	-	-	ı	-	-
	00h	6091h sub index	-	2	U8	ro	NO
	OOH	numbers					
	01h	Motor revolutions	r(motor)	1~429496729	U32	ro	NO
	OIII	Wiotor revolutions		5			
	02h	Shaft revolutions	r(shaft)	1~429496729	U32	ro	NO
	0211	Shart revolutions		5			
6092h	-	Feed constant	-	-	-	-	-
	00h	6092h sub index	-	2	U8	ro	NO
	UUn	numbers					
	0.11-	D 1 1	Command	1~429496729	U32	ro	NO
	01h	Feed value	unit	5			
	021	C1 C 1	r(shaft)	1~429496729	U32	ro	NO
	02h	Shaft revolutions		5			
60B8h	00h	Touch probe function	-	0~65535	U16	rw	RxPDO

Control word (6040h) < function in cst control mode>

Index	Sub-index		Name		Range		Data ty	ре	Acce	ss	PDC)	Op-mode
		Controlword			0~65535	;	U10	6 Rw		,	RxPDO		All
		Set the	Set the control command to the servo driver such as PDS state conversion.										
		Bit info	Bit information										
		15	14	13	12		11	1	0	9	8		
	00h				r					om	h		
6040h		7 6			5		4	3	2	1	0		
004011	Oon	fr oms			oms			eo	qs	ev	so		
			r		r		r						
		r = reserved(not corresponding)				onding) fr = fault reset							
			operation i			(eo = enal	ble ope	ration				
		(contro	1 mode is	based on	bit)		qs = quic	-					
	'	h = halt	_				ev = ena	ble vo	ltage				
		so = sw	itch on										

Cst mode doesn't use oms bit.

2)Objects associated with CST torque control (monitoring)

Index	Sub-index	Name	Units	Range	Data type	Access	PDO
6041h	00h	Statusword	-	0~65535	U16	ro	TxPDO
6073h	00h	Max current	0.1%	0~65535	U16	ro	NO

Other objects commonly associated with torque control (monitoring)

Index	Sub-index	Name	Units	Range	Data	Access	PDO
					type		
6063h	00h	Position actual	pulse	-2147483648~	I32	ro	TxPDO
		internal value		2147483647			
6064h	00h	Position actual value	Command	-2147483648~	I32	ro	TxPDO
			unit	2147483647			
606Ch	00h	Velocity actual value	Command	-2147483648~	I32	ro	TxPDO
		-	unit/s	2147483647			
6074h	00h	Torque demand	0.1%	-32768~32767	I16	ro	TxPDO
6075h	00h	Motor rated current	1mA	0~4294967295	U32	ro	TxPDO
6076h	00h	Motor rated torque	Mn·m	0~4294967295	U32	ro	TxPDO
6077h	00h	Torque actual value	0.1%	-32768~32767	I16	ro	TxPDO
6078h	00h	Current actual value	0.1%	-32768~32767	I16	ro	TxPDO

Other associated objects that share the same mode.

Index	Sub-index	Name	Units	Range	Data	Access	PDO
					type		
603Fh	00h	Error Code	ı	0~65535	U16	ro	TxPDO
60B9h	00h	Touch probe status	-	0~65535	U16	ro	TxPDO
60BAh	00h	The rising edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 1	unit	2147483647			
60BBh	00h	The falling edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 1	unit	2147483647			
60BCh	00h	The rising edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 2	unit	2147483647			
60BDh	00h	The falling edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 2	unit	2147483647			

Statusword (6041h) < functions in to control mode >

					itroi mode >							
Index	Sub-Index	Name	/Desci	ription	Range	DateType	A	ccess	;	PDC)	Op-mode
6041h	00h	St	atuswo	ord	0~65535	U16	ro			TxPDO		All
		Servo	drive	r status.	i							
		Bit in	format	tion								
		15	14	13		12		11	10	9	8	
			r		on	ıs		ila	oms	rm	r	
				r	Drive following	ng command va	ule		r			
		7	6	5		4		3	2	1	0	
		w	sod	qs		ve		f	oe	so	rsto	
		r = re	served	(not co	rresponding)			$\mathbf{w} = \mathbf{w}$	arning			
		sod =	switch	n on dis	sabled							
		oms =	opera	ition m	ode specific	qs = c	quick	stop				
		(conti	rol mo	de is ba	sed on bit)	ve = v	oltag	e enal	oled			
		ila = i	interna	l limit a	active	f = fa	ult					
		oe = 0	operati	on enal	oled							
		rm = remote				so = s	switch	ned or	1			
		rtso =	ready	to swit	tch on							

bit13,12,10(operation mode specific):

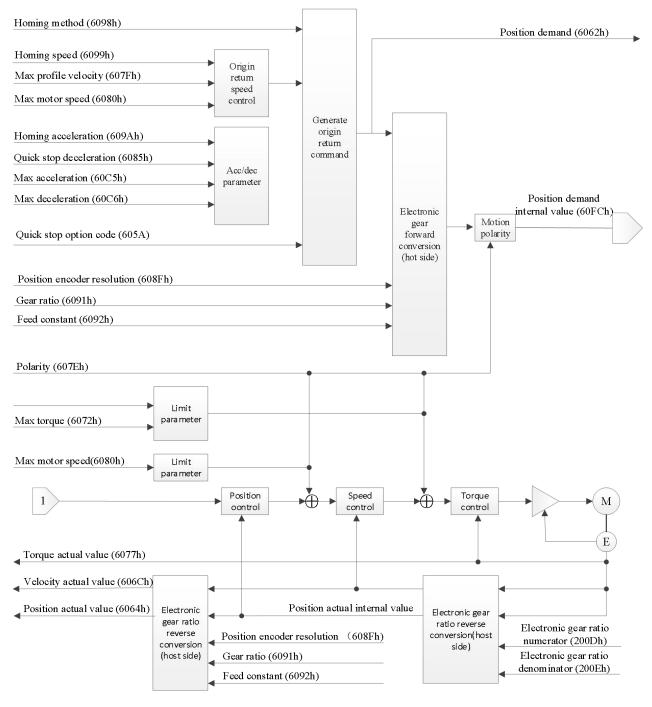
В	Bit	Name	Value	Definition
1	0	Reserved	-	Unuse
1	2	Torque	0	Action not performed according to target torque

		1	Perform the action according to the target torque
13	Reserved	-	Unuse

Performing actions according to target torque should meet the following conditions:

- The PDS status is operation enabled
- not in deceleration processing (halt, quickstop, shutdown, disable operation, falut)
- It is not a halt state

Actions of CST control mode


- In the cyclic torque control mode, the mode profile generation is not in the slave but in the host.
- The target torque is 6071h (target torque)
- The torque feedforward is 60B2h (torque offset), which is not supported temporarily.
- The update (sending) of action command, after the servo is on, please input after about 100ms.
- 60C2h (interpolation time period) means updating the period of 6071h (target torque) and 60B2h (torque offset). This value is set to the same period as 1C32h-02h (cycle time).
- As monitoring information, provide 6077h (torque actual value), etc.
- The 6071h (target torque) value is limited by 6072h (max torque), 2312h (P3-28), 2313h (P3-29), the minimum value.
- The speed limit is 6080h (max motor speed).

7.4.2 Common parameters

Register	Explanation	Unit
RXPDO[0x6071]	Target torque	0.1%
TXPDO[0x6064]	Position feedback	Command unit
TXPDO[0x606C]	Velocity feedback	Command unit /s
TXPDO[0x6077]	Torque feedback	0.1%
RXPDO[0x6080]	Max motor speed	r/min
RXPDO[0x6060]	Control mode is CST (Periodic	-
	Synchronous Torque Mode), set its	
	value to 10	

7.5 HM mode

HM mode (i.e. home mode) is used for initialization of the slave station position. An origin reset method is a position control mode that specifies an operation speed and generates a position command inside the servo driver to perform an origin reset operation. If it is used in the incremental mode, after the control power is put into operation, it is necessary to perform the zero point reset action before performing the position positioning work.

7.5.1 Related parameter

1)Related object of HM control mode(Command · setting)

Index	Sub-index	Name	Units	Range	Data type	Access	PDO
6040h	00h	ControlWord	-	0~65535	U16	rw	RxPDO
6098h	00h	Homing method	-	-128~127	I8	rw	RxPDO
6099h	-	Homing speeds	-	-	-	ı	-
	00h	Item numbers	-	2	U8	ro	NO
	01h	Homing switch speed	Command unit/s	0~4294967295	U32	rw	RxPDO
	02h	Homing speed	Command unit/s	0~4294967295	U32	rw	RxPDO
609Ah	00h	Homing acceleration	Command unit/s²	0~4294967295	U32	rw	RxPDO

Other related objects with common position control

o mor remove cojeva wim common position comici										
Index	Sub-index	Name	Units	Range	Data type	Access	PDO			
6072h	00h	Max torque	0.1%	0~65535	U16	rw	RxPDO			
607Fh	00h	Max profile velocity	Command unit/s	0~4294967295	U32	rw	RxPDO			
6080h	00h	Max motor speed	r/min	0~4294967295	U32	rw	RxPDO			
60B1h	00h	Velocity offset	Command unit/s	-2147483648~ 2147483647	I32	rw	RxPDO			
60B2h	00h	Torque offset	0.1%	-32768~32767	I16	rw	RxPDO			
60C5h	00h	Max acceleration	Command unit/ s²	0~4294967295	U32	rw	RxPDO			
60C6h	00h	Max deceleration	Command unit/ s ²	0~4294967295	U32	rw	RxPDO			

Other related objects with common actions

Index	Sub-index	Name	Units	Range	Data	Access	PDO
					type		
605Ah	00h	Quick stop option code	-	0~7	I16	rw	NO
605Bh	00h	Shutdown option code	-	0~1	I16	rw	NO
605Ch	00h	Disable operation option code	-	0~1	I16	rw	NO
605Dh	00h	Halt option code	-	1~3	I16	rw	NO
605Eh	00h	Fault reaction option code	-	0~2	I16	rw	NO
	-	Software position limit	-	-	-	-	-
	00h 607Dh sub index numbers		-	2	U8	ro	NO
607Dh	01h	Min position limit	Command unit	-2147483648~ 2147483647	132	rw	RxPDO
	02h	Max position limit	Command unit	-2147483648~ 2147483647	132	rw	RxPDO
607Ch	00h	Home offset	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
607Eh	00h	Polarity	-	0~255	U8	rw	NO
6085h	00h	Quick stop deceleration	Command unit/s²	0~4294967295	U32	rw	RxPDO
6086h	00h	Motion profile type	-	-32768~32767	I16	rw	RxPDO
	-	Position encoder resolution	-	-	-	-	-
608Fh	00h	608Fh sub index numbers	-	2	U8	ro	NO
	01h	Encoder increments	Pulse	1~4294967295	U32	ro	NO
	02h	Motor revolutions	r(motor)	1~4294967295	U32	ro	NO

Index	Sub-index	Name	Units	Range	Data	Access	PDO
					type		
	-	Gear ratio	-	-	-	-	-
	00h	6091h sub index	-	2	U8	ro	NO
6091h		numbers					
	01h	Motor revolutions	r(motor)	1~4294967295	U32	ro	NO
	02h	Shaft revolutions	r(shaft)	1~4294967295	U32	ro	NO
	-	Feed constant	-	-	-	-	-
	00h	6092h sub index	-	2	U8	ro	NO
6092h		numbers					
009211	01h	Set Feed	Command	1~4294967295	U32	ro	NO
			unit				
	02h	Shaft revolutions	r(shaft)	1~4294967295	U32	ro	NO
60B8h	00h	Touch probe function	-	0~65535	U16	rw	RxPDO

Controlword (6040h) < Functions in HM control mode >

Index	Sub-index	Name	F	Range	Data ty	ре	Acce	SS	PDO)	Op-mode
6040h	00h	Control	0~	65535	U16		Rw	Rw		Ю	All
		word									
		Set the con	trol cor	nmand to t	he servo d	river suc	h as PD	S state	conversi	on.	
		Bit informa	ation								
											_
		15	14 13 12 11 10						9	8	
			r						oms	h	
		7	6	5	4	1	3	2	1	0	
		Fr		or	ns		eo	qs	ev	so	
			r	r	start h	oming					
		r = reserve	d(not co	orrespondir	ng)	fr = fau	ılt reset				
		oms = oper		-			nable ope				
		(control me	(control mode is based on bit) $qs = quick stop$)			
		h = halt				ev = ev	nable vo	ltage			
		so = switch	n on								

bit9,6-4(operation mode specific):

,	(-F):				
Bit	Name	Value	Definition			
4	start homing $0 \rightarrow 1$ Start the origin point reset action					
5	(reserved)	-	not used			
6	(reserved) -		not used			
9	(reserved)	-	not used			

Through the opening of bit4 (start homing) of 6040h (control word), obtain the parameters (timing method, speed, acceleration and deceleration, etc.) associated with the origin reset position control mode (HM), and start the action.

In addition, in the origin reset action, even if a new origin reset action (bit4 of 6040h is started again), the new origin reset action is ignored.

Homing method(6098h)

Index	method(609 Sub-index	_) Name		Range	Data type	Access	PDO	Op-mode	
			Homing						•	
			method		-128~127	I8	rw	RxPDO	All	
		Se	t the zero	poii	nt reset method	1				
			Value			Definitio	n			
			-2	Rev	erse hitting hon	ning				
			-1	For	ward hitting hor	ning				
			0	No :	homing method	assigned				
			1	-Ve	LS & Index Pu	lse				
			2	+Ve	LS & Index Pu	ılse				
						alse direction rev				
						ılse no direction				
						lse direction rev				
						lse no direction	changed			
					+Ve HS -Index					
		8 On +Ve HS +Index Pulse								
				_		rse +Index Pulse				
					er +Ve HS +Ind					
				_	-Ve HS -Index I					
				On -Ve HS +Index Pulse						
				After -Ve HS reverse +Index Pulse						
				After -Ve HS +Index Pulse Reserved						
6098h	00h				erved					
					ne as 1 without I	Index pulse				
					ne as 2 without I					
					ne as 3 without I					
					ne as 4 without I					
					ne as 5 without I					
					ne as 6 without I					
					ne as 7 without I					
					ne as 8 without I					
			25	San	ne as 9 without I	Index pulse				
			26	San	ne as 10 without	Index pulse				
			27	San	ne as 11 without	Index pulse				
			28	San	ne as 12 without	Index pulse				
					ne as 13 without					
					ne as 14 without					
				_	Index Pulse +Vo					
					Index Pulse –Ve					
					rent postion = h					
					rent postion = h					
		1	+Ve: posi			it switch				
			-Ve: nega	tive	HS: Hon	ne switch				

Homing speeds(6099h)

Index	Sub-index	Name	Range	Data	Access	PDO	Op-mode				
				type							
6099h	-	Homing speeds	-	-	-	-	-				
		Set the speed in the home rese	Set the speed in the home reset position control mode (HM).								
	00h	Number of entries	2	U8	ro	NO	HM				
		Sub-Index number of 6099h (Homing speeds)								
	01h	Speed during search	0~4294967295	U32	rw	RxPDO	HM				
		Set the speed of the action to	be detected by the	switch sign	al.						
		The maximum value is limited by any smaller one of the internal processing of 6080h (max									
		motor speed) and 2147483647	7.								

02h	Speed during search for	0~4294967295	U32	rw	RxPDO	HM				
	zero									
	Set the action speed to zero point detection.									
	If the edge of the switch signal is used as the origin detection position, in order to reduce the									
	detection error, please set a va	alue as small as po	ssible.	-						
	The maximum value is limited by the smaller side of the internal processing of 6080h (max									
	motor speed) and 2147483647.									

Homing acceleration (609Ah)

Index	Sub-index	Name	Range	Data type	Access	PDO	Op-mode			
609Ah	00h	Homing	0~4294967295	U32	rw	RxPDO	All			
		acceleration								
		Set the acceleration and deceleration in the origin reset position control mode (HM).								
		The deceleration	n of the home reset po	osition control i	mode (HM) is a	lso used for	this object.			
		When each hom	ning method is finally	stopped (when	the origin posi	tion is check	ed out), the			
		setting of this object is not needed, and the servo lock stops.								
		If set to 0, intern	nal processing is treat	ed as 1.						

2) Objects associated with HM control mode (monitor)

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6041h	00h	Statusword	-	0~65535	U16	ro	TxPDO
60E3h	-	Supported homing method	-	-	-	-	TxPDO
	00h	60E3h sub index numbers	-	1~254	U8	ro	TxPDO
	01h	Homing mode 1	-	0~32767	U16	ro	TxPDO
	20h	Homing mode 32	-	0~32767	U16	ro	TxPDO

Other associated objects with common position control

Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
6062h	00h	Position command	Command	-2147483648~	I32	ro	TxPDO
			unit	2147483647			
6063h	00h	Actual internal position	pulse	-2147483648~	I32	ro	TxPDO
		feedback		2147483647			
6064h	00h	Position feedback	Command	-2147483648~	I32	ro	TxPDO
			unit	2147483647			
6065h	00h	Position offset too large	Command	0~4294967295	U32	rw	RxPDO
		threshold	unit				
6066h	00h	Error time out	1ms	0~65535	U16	rw	RxPDO
6067h	00h	Position reach the threshold	Command	0~4294967295	U32	rw	RxPDO
			unit				
6068h	00h	Position reach window time	1ms	0~65535	U16	rw	RxPDO
606Ch	00h	Velocity feedback	Command	-2147483648~	I32	ro	TxPDO
			unit/s	2147483647			
6074h	00h	Torque command	0.1%	-32768~32767	I16	ro	TxPDO
6076h	00h	Motor rated torque	Mn∙m	0~4294967295	U32	ro	TxPDO
6077h	00h	Torque feedback	0.1%	-32768~32767	I16	ro	TxPDO
60F4h	00h	Position offset	Command	-2147483648~	I32	ro	TxPDO
			unit	2147483647			
60FAh	00h	Internal command speed	Command	-2147483648~	I32	ro	TxPDO
		(position loop output)	unit/s	2147483647			
60FCh	00h	Internal position command	pulse	-2147483648~	I32	ro	TxPDO
				2147483647			

Note: 6064h (position feedback) will reset after HM homing.

Other related objects with common actions

Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
603Fh	00h	Error Code	-	0~65535	U16	ro	TxPDO
60B9h	00h	Touch probe status	-	0~65535	U16	ro	TxPDO
60BAh	00h	The rising edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 1	unit	2147483647			
60BBh	00h	The falling edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 1	unit	2147483647			
60BCh	00h	The rising edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 2	unit	2147483647			
60BDh	00h	The falling edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 2	unit	2147483647			

Statusword (6041h) < functions in hm control mode >

Index	Sub-index	Name		Range	Data type	A	ccess	PDO		Op-mode	
6041h	00h	Statusword		0~65535	U16	ro		TxPDO			All
		Servo driver status									
		Bit information									
		15 14		13	12	11	10		9	8	
		1	r	(oms	ila	om	ıs	rm	r	
				Homing error	Homing attained		Target reached				
		7 6		5	4	3	2		1	0	
		W sod		qs	ve	f	06	;	so	rsto	
		r = re	servec	(not correspond	$\mathbf{v} = \mathbf{w}$	arning					
		sod =	sod = switch on disabled								
			oms = operation mode specific $qs = quick stop$								
			(control mode is based on bit) ve = voltage enabled								
		$ila = internal \ limit \ active$ $f = fault$									
		oe = 0	oe = operation enabled								
		rm =	rm = remote so = switched on								
		rtso =	rtso = ready to switch on								

bit13.12.10(operation mode specific):

01115,12	oit13,12,10(operation mode specific).						
Bit	Name	Value	Definition				
10 target reached		0	In action				
		1	Stop status				
homing attained		0	Homing action not completed				
		1	Homing action completed				
12	11	0	Homing abnormality does not occur				
13	Homing error	1	Abnormal homing (the homing action cannot be executed normally)				

bit13,12,10(operation mode specific):

Bit13	Bit12	Bit10	Definition	
0	0	0	Homing in action	
0	0	1	1 Homing action interrupted or not started	
0	1	0	0 Homing action is completed, but the target position is not reached	
0	1	1	Normal completion of homing	
1	0	0	Detect out that the homing abnormality is still in operation	
1	0	1	Detect out the abnormal homing and stop state	

bit12 (homing attained) is 0 in the following states:

- When the power is on
- When the ESM state is transferred from Init to PreOP
- At the beginning of origin point reset

When the homing action (method35, method37) without motor action is started, the homing attached is also set to 0. However, the time set to 0 is short (about 2 ms).

Supported homing method (60E3)

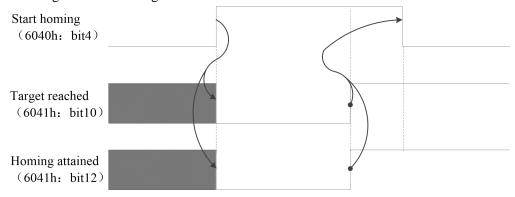
Index	Sub-index	Name	Unit	Range	Data type	Access	PDO			
60E3h	-	Supported Homing method	-	-	-	-	TxPDO			
	Indicates th	e supported homing method								
	00h	Number of entries	-	1~254	U8	ro	TxPDO			
	Represents	the number of homing methods support	orted by	60E3h (sup)	orted homin	g method).				
	01h	1st supported Homing method	-	0~32767	U16	ro	TxPDO			
	Indicates th	at the first home method is supported								
	20h	32nd supported Homing method - 0~32767 U16 ro TxPDO								
	Indicates th	at the 32nd home method is supported	d		·	·				

Index	Sub-index	bit 15~8	bit 7~0
		Reserved	Supported Homing method
60E3	01h	0	1
	02h	0	2
	03h	0	3
	04h	0	4
	05h	0	5
	06h	0	6
	07h	0	7
	08h	0	8
	09h	0	9
	0Ah	0	10
	0Bh	0	11
	0Ch	0	12
	0Dh	0	13
	0Eh	0	14
	0Fh	0	17
	10h	0	18
	11h	0	19
	12h	0	20
	13h	0	21
	14h	0	22
	15h	0	23
	16h	0	24
	17h	0	25
	18h	0	26
	19h	0	27
	1Ah	0	28
	1Bh	0	29
	1Ch	0	30
	1Dh	0	33
	1Eh	0	34
	1Fh	0	35
	20h	0	37

The relationship between * value and Homing method please refer to 6098h (Homing method).

3) The action of HM control mode (Homing action)

When using in incremental mode, in order to initialize the location information before starting the normal action, please execute the homing action.


• After the origin position is detected, this position is used as the reference to initialize the following objects (preset).

6062h(Position demand value)= 6064h(Position actual value)= 607Ch(Home offset)

- 6063h(Position actual internal value)= 60FCh(Position demand internal value)= 0
- If the origin point reset is performed, the position information is initialized (preset). Therefore, it is necessary to obtain the data based on the old location information again (touch probe location, etc.).
- Whether 607Ch (home offset) is changed or not in the homing action, it is not reflected in the executing homing action. The next homing action will be reflected (initialization of position information upon completion).
- 607C (me offset) is only valid in homing mode 35 and 37.
- If the edge of the switch signal (T, NOT, HOME) is used as the detection position of the origin, please assign each clamping compensation pin to SI1, SI2, SI3. If it is not allocated correctly, an error will be reported in the origin reset. (Note: P5-22 of DS5C2 series servo is the setting address of positive limit, the default value is 1, the corresponding servo terminal is SI1; P5-23 is the setting address of negative limit NOT, the default value is 2, the corresponding servo terminal is SI2; P5-27 is the setting address of origin, the default value is 3, the corresponding servo terminal is SI3.)
- In the Method diagrams described later, the meaning of below terms:

Index pulse	Z phase signal of encoder
Home switch	Theoretical signal state of near origin input(ME)
Positive limit	Theoretical signal state of forward drive inhibit input(POT)
Negative limit	Theoretical signal state of negative drive inhibit input(NOT)

- After the update (sending) of action command and the operation enabled command, please input after about 100 ms.
- The following shows the timing of the HM control mode.

• Homing error occurrence condition

According to the homing action, the conditions for an exception (homing error = 1) are as follows.

recording to the noming detic	the conditions for an exception (noming error 1) are as follows:
Homing error occurrence	Details
condition	
Startup except Operation	Start Homing when PDS status is not Operation enabled (except for method35,
enabled	37)
	Startup Homing when 6099h-01h and 6099h-02h is set to 0
Startup under target speed 0	(except 6099h-02h of method33, 34 and 6099h-01h, 6099h-02h of method35, 37
	are 0)
detected out two Limit	Two limit switches of positive/negative are detected during the homing start or the
switch	homing action.
	Under the method reversed by limit switch, in the reverse deceleration action after
Use Limit switch	the rising edge of limit switch is detected, the falling edge of limit switch is
	detected
Home switch, Limit switch	Not distribute IO terminal
not distributed	

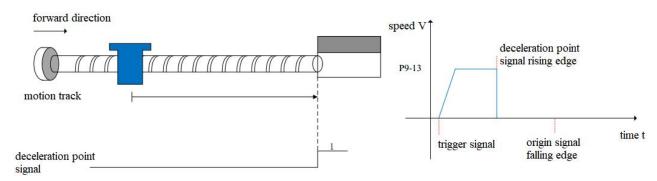
7.5.2 Related parameters

Register	Explanation	Unit
RXPDO[0x6040]	Control word, modify the control word to enable the homing	-
RXPDO[0x6098]	Homing method	-
RXPDO[0x609A]	Homing acceleration	Command unit/s ²
RXPDO[0x6060]	Set to 6 when the motor is not enabled	-
SDO[0x6099]	Homing speed, can be modified online through COE-Online	Command unit/s

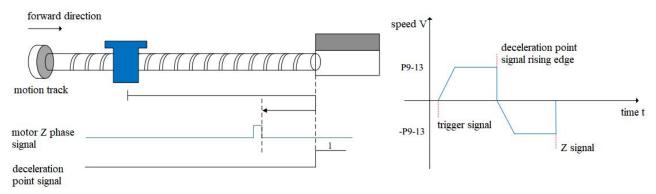
Control word (6040h)

Set it to (0x06 > 0x0f > 0x1f) in sequence, enable the driver and start the motor to operate, and homing is enabled.

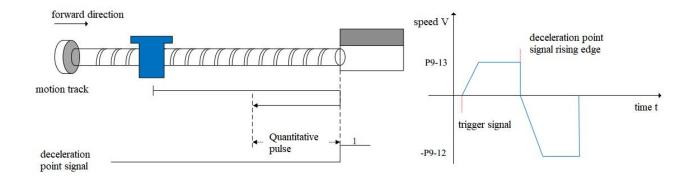
7.5.3 Homing method


Now DS5C2 servo driver support 1~14, 17~30, 33, 34, 35, 37 and -1, -2 homing method.

If the slave station of other brands is used, the method of homing to the original point shall be subject to the slave station Manual of the corresponding brands.


■ Method -1:

The servo motor first runs at a forward low speed with the set value of 6099h:02 (low speed for homing). After hitting the mechanical limit position, if the absolute value of the torque reaches the upper limit of P9-17 (touch stop homing torque threshold), and the absolute value of the speed is lower than the set value of P9-16 (touch stop homing speed threshold), this state is maintained for the set time of P9-18 (touch stop homing time threshold), and it is judged to have reached the mechanical limit position. Then it can be divided into two situations:


1) P7-20=0, and the number of quantitative pulses is 0. At this point, immediately stop the machine and calibrate it as zero (position reset);

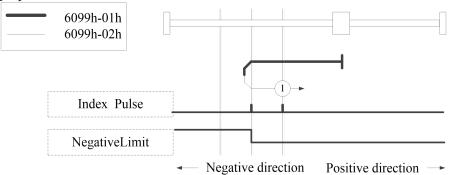
2 P7-20>0, the number of quantitative pulses is 0, and it runs in reverse at the setting homing low speed. When encountering the rising edge of P7-20 Z-phase signals, it immediately stops and calibrates the zero point (position reset).

③ P7-20=0, and the number of quantitative pulses is not 0. First, run in the forward direction at low speed (6099h: 02), and after touching the mechanical point, run in the reverse direction at homing high speed (6099h: 01). After the quantitative pulse length is reached, stop the machine and calibrate it as the zero point (Ecat position is reset to zero);

4 P7-20>0, the number of quantitative pulses is not 0. First, run in the forward direction at low speed (6099h: 02), and then run in the reverse direction at the set homing low speed (6099h: 02) when encountering the mechnical origin, stop machine when encountering the rising edge of P7-20 Z-phase signals. After stopping, run the quantitative pulse length at the homing high speed (6099h: 01), and then

stop the machine. Calibrate the zero point (Ecat position is reset).

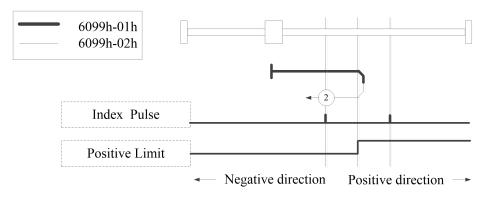
Parameter	Function	Unit	Default value	Range	Effective time	Suitable mode
P7-20	Ethercat homing find the Z phase numbers	-	1	-9999~9999	0	EtherCAT mode


The positive and negative values of the P7-20 parameters represent the direction of homing, with positive values indicating the forward direction of finding the origin, negative values indicating the reverse direction of finding the origin, and absolute values indicating the number of Z-phase points for homing.

■ Method -2:

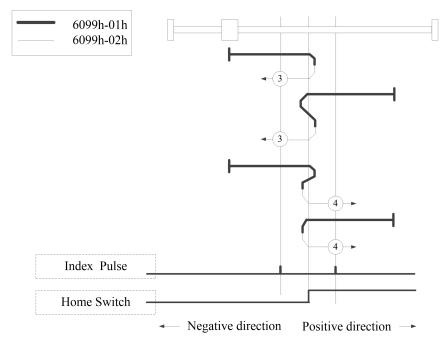
Similar to the previous homing action, running in the opposite direction.

■ Method 1:


When using this homing method 1, if the reverse limit switch is in a non triggered state, the initial direction of movement is left. The first Z-phase pulse to the right of the position where the negative limit switch becomes invalid at the origin position.

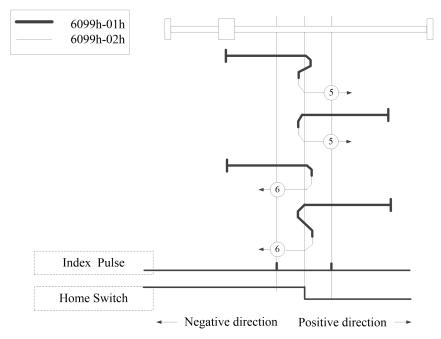
Homing on negative limit switch and index pulse

■ Method 2:


When using method 2, if the forward limit switch is not triggered, the initial movement direction is to the right. The origin position is at the first Z-phase pulse to the left of the position where the forward limit switch becomes invalid.

Homing on positive limit switch and index pulse

■ Method 3, 4:


Using method 3 or 4, the initial direction of movement depends on the state of the origin switch. The origin position is on the reverse side of the origin switch or at the initial detected Z-phase position in the forward rotation direction.

Homing on positive home switch and index pulse

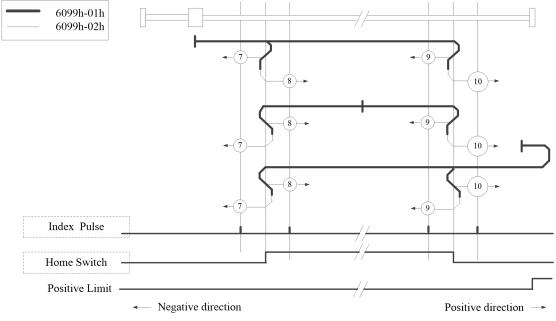
■ Method 5, 6:

Using method 5 or 6, the initial direction of movement depends on the state of the origin switch. The origin position is on the reverse side of the origin switch or at the initial detected Z-phase position in the forward rotation direction.

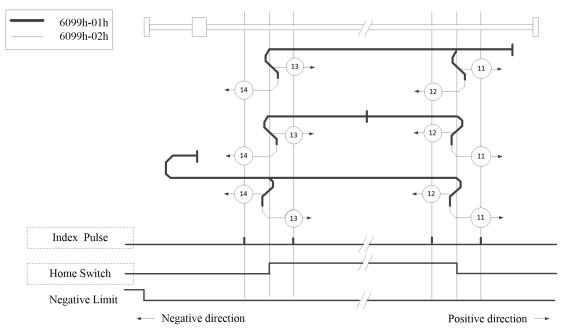
Homing on negative home switch and index pulse

■ Method 7~14:

7-14 all use origin switches and Z-phase signals;


The initial action direction of modes 7 and 8 is negative if the origin switch is already activated at the beginning of the action;

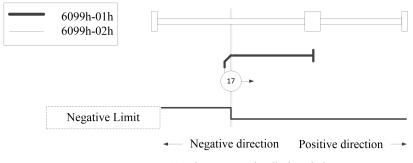
The initialization direction of modes 9 and 10 is positive if the origin switch is already activated at the beginning of the action;


The initialization direction of modes 11 and 12 is positive if the origin switch is already activated at the beginning of the action;

The initialization direction of modes 13 and 14 is negative if the origin switch is already activated at the beginning of the action;

The final position returned to the origin is the Z-phase signal near the rising or falling edge of the origin switch.

Homing on home switch and index pulse - positive initial motion


Homing on home switch and index pulse - Negative initial motion

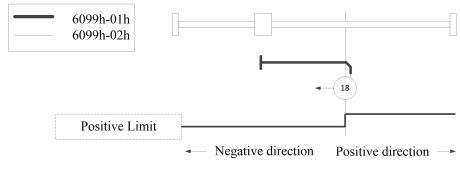
■ Method 17:

This method is similar to Method 1.

The difference is that the origin detection position is not the index pulse, but the position where the Limit switch changes. (Please refer to the following figure)

When NOT is not assigned, Homing error=1.

Homing on negative limit switch


■ Method 18:

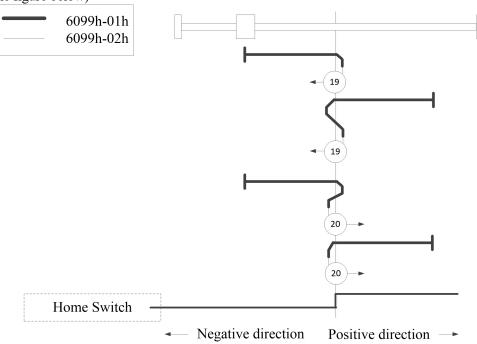
This method is similar to Method 2.

The difference is home detection position is not Index pulse. It is becoming the position where limit switch changed.

When POT is not allocated, Homing error = 1.

(Please refer to the figure below)

Homing on positive limit switch


■ Method 19,20:

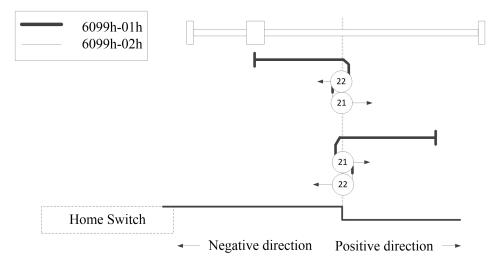
These methods is similar to Method 3 and 4.

The difference is home detection position is not Index pulse. It is becoming the position where Home switch changed.

When HOME is not assigned, homing error = 1.

(Please refer to the figure below)

Homing on positive home switch


■ Method 21,22:

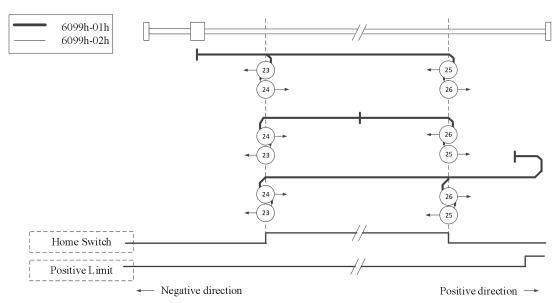
These methods is similar to Method 5 and 6.

The difference is home detection position is not Index pulse. It is becoming the position where Home switch changed.

When HOME is not assigned, homing error = 1.

(Please refer to the figure below)

Homing on positive home switch and index pulse

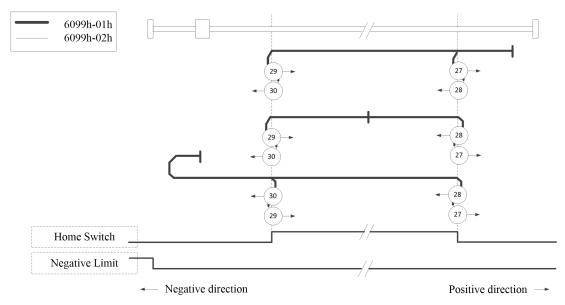

■ Method 23,24,25,26:

These methods is similar to Method 7, 8, 9, 10.

The difference is home detection position is not Index pulse. It is becoming the position where Home switch changed.

When HOME, POT is not assigned, homing error = 1.

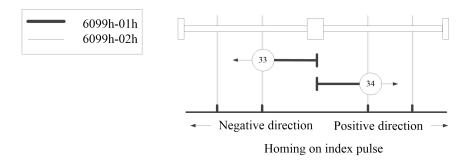
(Please refer to the figure below)


Homing on home switch and index pulse - positive initial motion

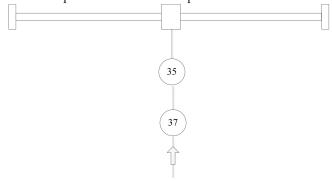
■ Method 27,28,29,30:

These methods is similar to Method 11,12,13,14.

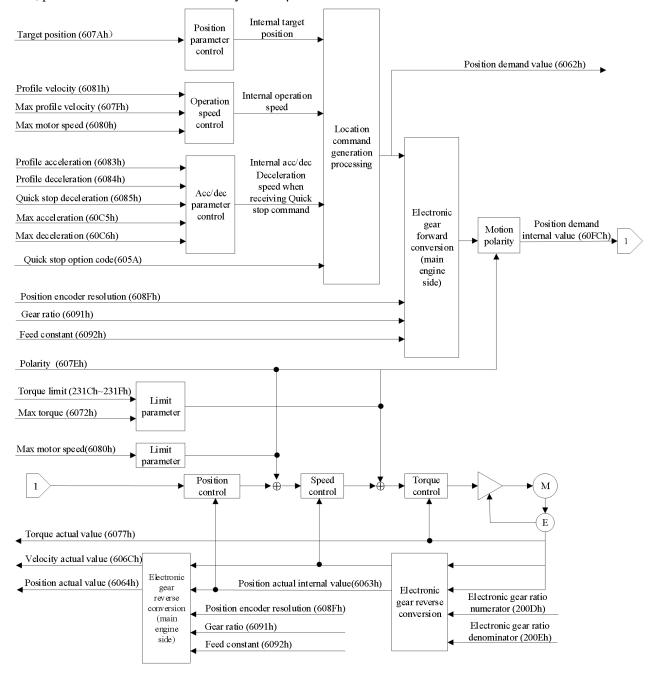
The difference is home detection position is not Index pulse. It is becoming the position where Home switch changed.


When HOME, NOT is not assigned, homing error = 1.(Please refer to the figure below)

Homing on home switch and index pulse - Negative initial motion


■ Method 33, 34:

Using methods 33 or 34, homing direction with negative or positive values, respectively. The original position is located near Z in the selected direction.


■ Method 35, 37:

In modes 35 and 37, the position after power on is the home position.

7.6 PP mode

PP (profile position control mode) is the position control mode that specifies the target position, target speed, acceleration/deceleration, etc., and acts after generating a position command in the servo driver. For this control mode, please check the communication cycle 500 µs or more.

7.6.1 Related parameters

1)PP control mode related objects(Command · settings)

/		3	<i>U</i> /				
Index	Sub-index	Name	Units	Range	Data type	Access	PDO
6040h	00h	Control word	-	0~65535	U16	rw	RxPDO
6072h	00h	Max torque	0.1%	0~65535	U16	rw	RxPDO
607Ah	00h	Target position	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
607Dh	-	Software absolute position limit	-	-	-	-	-
	00h	607Dh sub index	-	2	U8	ro	NO

Index	Sub-index	Name	Units	Range	Data type	Access	PDO
		numbers			•		
	01h	Min position limit	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
	02h	Max position limit	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
607Fh	00h	Max profle velocity	Command unit/s	0~4294967295	U32	rw	RxPDO
6080h	00h	Max motor speed	r/min	0~4294967295	U32	rw	RxPDO
6081h	00h	Profile velocity	Command unit/s	0~4294967295	U32	rw	RxPDO
6083h	00h	Profile acceleration	Command unit/s²	0~4294967295	U32	rw	RxPDO
6084h	00h	Profile deceleration	Command unit/s²	0~4294967295	U32	rw	RxPDO
60B1h	00h	Velocity offset	Command unit/s	-2147483648~ 2147483647	I32	rw	RxPDO
60B2h	00h	Torque offset	0.1%	-32768~32767	I16	rw	RxPDO
60C5h	00h	Max acceleration	Command unit/ s ²	0~4294967295	U32	rw	RxPDO
60C6h	00h	Max deceleration	Command unit/ s ²	0~4294967295	U3	rw	RxPDO

Other related objects with common actions

Index	Sub-index	Name	Units	Range	Data type	Access	PDO
605Ah	00h	Quick stop option code	-	0~7	I16	rw	NO
605Bh	00h	Shutdown option code	-	0~1	I16	rw	NO
605Ch	00h	Disable operation option code	-	0~1	I16	rw	NO
605Dh	00h	Halt option code	-	1~3	I16	rw	NO
605Eh	00h	Fault reaction option code	-	0~2	I16	rw	NO
	-	Software position limit	-	-	-	-	-
	00h	607h sub index numbers	-	2	U8	ro	NO
607Dh	01h	Min position limit	Command unit	-2147483648~ 2147483647	132	rw	RxPDO
	02h	Max position limit	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
607Ch	00h	Home offset	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
607Eh	00h	Polarity	-	0~255	U8	rw	NO
6085h	00h	Quick stop deceleration	Command unit/s ²	0~4294967295	U32	rw	RxPDO
6086h	00h	Motion profile type	-	-32768~32767	I16	rw	RxPDO
	-	Position encoder resolution	-	-	-	-	-
608Fh	00h	608Fh sub index numbers	-	2	U8	ro	NO
	01h	Encoder increments	pulse	1~4294967295	U32	ro	NO
	02h	Motor revolutions	r(motor)	1~4294967295	U32	ro	NO
	-	Gear ratio	-	-	-	-	-
6091h	00h	6091 sub index numbers	-	2	U8	ro	NO
	01h	Motor revolutions	r(motor)	1~4294967295	U32	ro	NO
	02h	Shaft revolutions	r(shaft)	1~4294967295	U32	ro	NO
6092h	-	Feed constant	-	-	-	•	-
009211	00h	6092h sub index		2	U8	ro	NO

Index	Sub-index	Name	Units	Range	Data type	Access	PDO
		numbers					
	01h	Feed	Command unit	1~4294967295	U32	ro	NO
	02h	Shaft revolutions	r(shaft)	1~4294967295	U32	ro	NO
60B8h	00h	Touch probe function	-	0~65535	U16	rw	RxPDO

Controlword(6040h) < functions in PP control mode>

Index	Sub-index		ame	Range	Data	ype	Access		I	PDO		Op-mode	
		Conti	olword	0~65535	U	6	rw		R	xPDO		All	
		Set th	ne control	command to	the servo d	river s	uch as PDS	state	conv	ersion	n.		
		Bit in	formatio	n								_	
		15	14	13	12		11	1	.0	9	8		
					r					om	h]	
		7	6	4	5		4	3	2	1	0		
6040h	00h	fr			oms			eo	qs	ev	so		
			abs/rel	Change set i	immediately	Nev	w set-point						
		r = re	served(ne	ot correspond	ing) f	= faul	lt reset						
		oms =	oms = operation mode specific eo = ena			able operati	on						
									iick stop				
		h = h	alt			ev = er	nable voltag	e					
		so = s	switch on	l									

Bit6-4(operation mode specific):

Bit	Name	Value	Definition
4	new set-point	0 -> 1	Start the positioning action and trigger the setting value update. Get the new location determination task (607Ah (Target position), 6081h (Profile velocity), etc.).
5	change set immediately	1	Complete the currently running positioning action. That is, during the movement, if the target position 607A, acceleration 6083, deceleration 6084 are changed, and then the control command is sent, it will not operate according to the new movement parameters. It is necessary to send a new command after the last movement is completed to execute the new movement. Interrupt the current positioning action and immediately start the downward positioning action. That is, during the movement, the target position 607A, acceleration 6083 and deceleration 6084 are changed, and then the control command is sent. For example, after the control word $0x6f(111) \rightarrow 0x7F(127)$ (relative mode) or $0x2F(47) \rightarrow 0x3f(63)$ (absolute mode) is changed, the system will immediately operate according to the new motion parameters.
6	absolute/relative	0	607Ah(target position) Process as absolute position 607Ah(target position) Process as absolute position

Note:

(1) please do not change the acceleration and deceleration during motor operation (*).

If the acceleration and deceleration are changed, please change bit4 (new set point) from 0 to 1 after the motor stops.

6083h (Profile acceleration)

6084h (Profile deceleration)

60C5h (Max acceleration)

60C6h (Max deceleration)

- (2) In the following status, if set point is executed (bit4 (new set-point) is changed from 0 to 1), please note that its positioning task is revoked.
- --6081h (profile speed) = 0.
- (3) if the driving prohibition in deceleration is detected according to halt = 1, all the positioning tasks are invalid.
- (4) start the PP action, and keep it for more than 2ms until the next PP action is started (new set-point changes from 0 to 1).
- 2) Related objects in pp control mode(monitor)

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6041h	00h	Controlword	-	0~65535	U16	ro	TxPDO

Other related objects with common position control.

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6062h	00h	Position demand value	Command unit	-2147483648~ 2147483647	I32	ro	TxPDO
6063h	00h	Position actual internal value	pulse	-2147483648~ 2147483647	I32	ro	TxPDO
6064h	00h	Position actual value	Command unit	-2147483648~ 2147483647	I32	ro	TxPDO
6065h	00h	Threshold for excessive positional deviation	Command unit	0~4294967295	U32	rw	RxPDO
6066h	00h	Error time out	1ms	0~65535	U16	rw	RxPDO
6067h	00h	Position reach the threshold	Command unit	0~4294967295	U32	rw	RxPDO
6068h	00h	Position window time	1ms	0~65535	U16	rw	RxPDO
606Ch	00h	Velocity feedback	Command unit/s	-2147483648~ 2147483647	I32	ro	TxPDO
6074h	00h	Torque command	0.1%	-32768~32767	I16	ro	TxPDO
6076h	00h	Motor rated torque	Mn⋅m	0~4294967295	U32	ro	TxPDO
6077h	00h	Torque feedback	0.1%	-32768~32767	I16	ro	TxPDO
60F4h	00h	Position deviation	Command unit	-2147483648~ 2147483647	I32	ro	TxPDO
60FAh	00h	Internal command speed (position loop output)	Command unit/s	-2147483648~ 2147483647	I32	ro	TxPDO
60FCh	00h	Internal position command	pulse	-2147483648 ~ 2147483647	I32	ro	TxPDO

Other related objects with common actions.

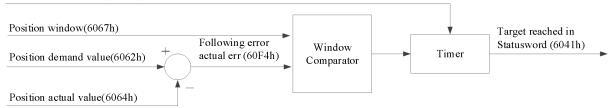
Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
603Fh	00h	Error code	-	0~65535	U16	ro	TxPDO
60B9h	00h	Touch probe status	ı	0~65535	U16	ro	TxPDO
		The rising edge	Command	-2147483648~	I32	ro	TxPDO
60BAh	00h	clamping position of	unit	2147483647			
		Touch probe 1					
		The falling edge	Command	-2147483648~	I32	ro	TxPDO
60BBh	00h	clamping position of	unit	2147483647			
		Touch probe 1					
		The rising edge	Command	-2147483648~	I32	ro	TxPDO
60BCh	00h	clamping position of	unit	2147483647			
		Touch probe 2					
		The falling edge	Command	-2147483648~	I32	ro	TxPDO
60BDh	00h	clamping position of	unit	2147483647			
		Touch probe 2					

Statusword (6041h)< functions in pp control mode >

Index	Sub-index	Name	Range	Data type	Access	s	PDO	Op-	-mode	
		Statusword	0~65535	U16	ro		TxPDO		All	
	Servo driver status									
		Bit information	tion							
		15 14	13	12		11	10	9	8	
		r		oms	oms ila			rm	r	
6041h	00h		Following Error	set- point ackr	nowledge		Target Reached			
		7 6	5	4		3	2	1	0	
		w sod	Qs	ve		f	oe	so	rsto	
		r = reserved	(not corresponding	g) w	y = warnin	g				
	sod = switch on disabled									
		oms = opera	oms = operation mode specific $qs = quick stop$							

(control mode is based on bit) ila = internal limit active oe = operation enabled	ve = voltage enabled f = fault	
rm = remote	so = switched on	
rtso = ready to switch on		

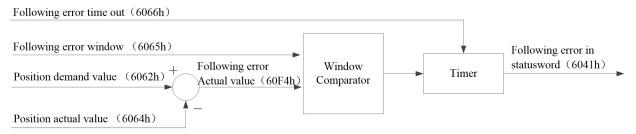
bit13,12,10(operation mode specific):


Bit	Name	Value	Definition
			halt=0(normal): positioning incompleted
10	target reached		halt=1(stop as halt):shaft is decelerating
10	target reached	1	halt=0(normal):positioning completed
			halt=1(stop as halt):shaft stop(shaft speed is 0)
	12 set-point acknowledge		The new-setpoint is 0, and the buffer is empty after the current target
12			position is executed (in execution)
		1	The new location task puts data into the buffer, which is not empty.
		0	60F4h(Following error actual value)
			(= 6062h(Position demand value)– 6064h(Position actual value)), not
			over the setting range of 6065h(Following error window), or the value
13	following error		of 60F4h is over 6065h, not through the setting time of 6066h.
			The value of 60F4h (Following error actual value), the status over the
			setting range of 6065h (Following error window), above the setting
			time of 6066h(Following error time out), continue.

bit10:target reached(Position reached)

When the servo enable state (operation effective state) and the set-points all give the completion instruction generation state, the difference between 6062h (position required value) and 6064h (position actual value) is within the range set in 6067h (position window). After the time set in 6068H (position window time), the bit10 (target reached) of 6041h (status word) changes to 1.

Bit	Name	Vlaue	Definition	
	0 halt=0 (normal): positionin		halt=0 (normal): positioning incompleted	
10	Target reached		halt=1 (stop as halt): shaft is decelerating	
10	10 Target reached 1 halt=0 (normal): positioning completed halt=1 (stop as halt): shaft stop (shaft speed is 0)		halt=0 (normal): positioning completed	
			halt=1 (stop as halt): shaft stop (shaft speed is 0)	

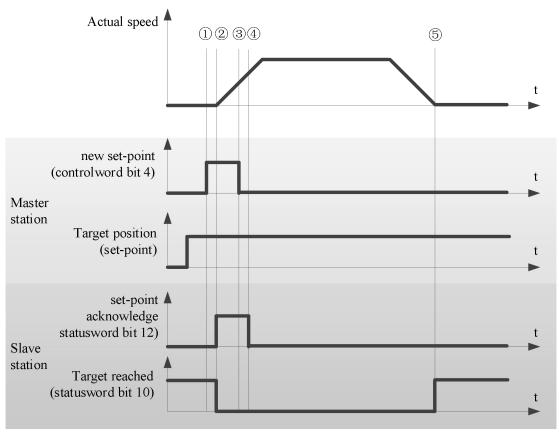

Location arrival diagram

Index	Sub-index	Name	Units	Range	Data	Access	PDO	OP-	
					type			mode	
		Position reach	Command	0~4294967295	U32	rw	RxPDO	PP	
		threshold	unit						
6067h	00h	The difference betw	veen 6062h (Po	sition command)	and 6064h	(Position	feedback)	is	
000711	Oon	within the set value	of this parame	ter. After the time	e set in 606	8H (Posit	ion windo	w time),	
		set the bit10 (Target reached) of 6041h (Status word) as the threshold value of 1.							
		If the difference is a value other than this parameter setting, bit10 of 6041h is 0.							
		Position window	1ms	0~65535	U16	rw	RxPDO	PP	
		time							
6068h	00h	The difference between 6062h (position command) and 6064h (position feedback) is the							
		time when the bit10 (target reached) of 6041h (status word) is set to 1 in the range of							
6067h (position window) setting.									

bit13:following error

The status that the value of 60F4h (position deviation) is over the setting range of 6065h (position offset too large threshold). If continue the setting time of 6066h (error time out), bit13(following error) of 6041h (state word) changes to 1.

Bit	Name	Value	Definition
		0	60F4h (position deviation) (= 6062h (Position command) – 6064h(Position feedback)), not over the setting range of 6065h (position offset too large threshold), or the value of 60F4h is over 6065h, not after the setting time of 6066h
13	Following error	1	The value of 60F4h (position offset) is over the setting range of 6065h (position offset too large threshold), above the setting time of 6066h (error time out), continue.


Follow error function diagram

Index	Sub-index	Name	Units	Range	Data	Access	PDO	OP-
					type			mode
6065h	00h	Position offset too	Command	0~ 4294967295	U32	rw	RxPDO	PP
		large threshold	unit					CSP
		60F4h(Following erro	r actual value): the condition exce	ept the so	etting valu	e of this	
		parameter, set 6041h ((statusword) b	oit 13 (following erro	or) to 1.			
6066h	00h	error time out	1ms	0~65535	U16	rw	RxPDO	PP
								CSP
		The status that 60F4h (position offset) value is over the setting range of 6065h (position						
		offset too large thresh	old) is above	this parameter, if co	ntinue, s	et 6041h	(Statuswor	d)
		bit13(following error)	to 1.	-				

3) pp control mode action

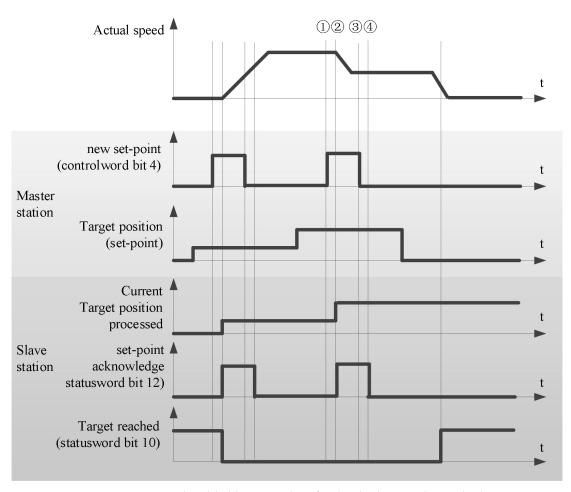
Action example 1:(basic set-point)

- (1) For the master station, after setting the value of 607Ah (Target position), change the bit4 (new set point) of 6040h (control word) from 0 to 1. At this time, please also set 6081h (profile velocity).
- When 6081h (profile velocity) is 0, the motor does not act.
- (2) For the slave station, confirm the rising edge $(0 \rightarrow 1)$ of bit4 (New set-point) of 6040h (control word), 607Ah (target position) as the target position to start positioning. At this time, bit12 (set point acknowledge) of 6041h (status word) is changed from 0 to 1.
- (3) For the master station, confirm that bit12 (set-point acknowledge) of 6041h (status word) has changed from 0 to 1, bit4 (new set-point) of 6040h (control word) returns 0.
- (4) For the slave station, confirm that the bit4 (new set-point) of 6040h (control word) has been 0, 6041h (status word) bit12 (set-point acknowledge) has changed to 0.
- (5) when the target position is reached, the bit10 (target reached) of 6041h (control word) is changed from 0 to 1.

< Set-point example >

Note:

- (1) 6081h (profile velocity) is limited by the smaller one of 607fh (max profile velocity) and 6080h (max motor speed).
- (2) changing the set value of 607Fh (max profile velocity) or 6080h (max motor speed) in the action is not reflected in the action.


Action example 2: (Action data change without buffer: single set-point)

When bit5 (change set immediately) of 6040h (control word) is 1, if the data used for positioning action in the action has been changed, the current positioning action will be interrupted and the next positioning action will be started immediately.

- (1) For the master station, confirm that the bit12 (set-point acknowledge) of 6041h (status word) is 0. After changing the value of 607Ah (target position), change the bit4 (New set-point) of 6040h (control word) from 0 to Note: at this time, please do not change the acceleration and deceleration.
- (2) For the slave station, confirm the rising edge $(0 \rightarrow 1)$ of bit4 (New set-point) of 6040h (control word), and update 607Ah (target position) as the new target position immediately. At this time, bit12 (set-point acknowledge) of 6041h (status word) is changed from 0 to 1.
- (3) For master station, confirm that bit12 (set point acknowledge) of 6041h (status word) has changed from 0 to 1, bit4 (new set-point) of 6040h (control word) returns 0.
- (4) For slave station, confirm that the bit4 (new set point) of 6040h (control word) has been 0, the bit12 (set point acknowledge) of 6041h (status word) is 0.

Note: 6081h (profile velocity) can be changed in the same steps (1) - (4).

After changing the 607Ah (target position) and 6081h (profile velocity), update the 607Ah (target position) and 6081h (profile velocity) simultaneously according to the above steps (1) - (4).

< handshaking procedure for the single set-point method >

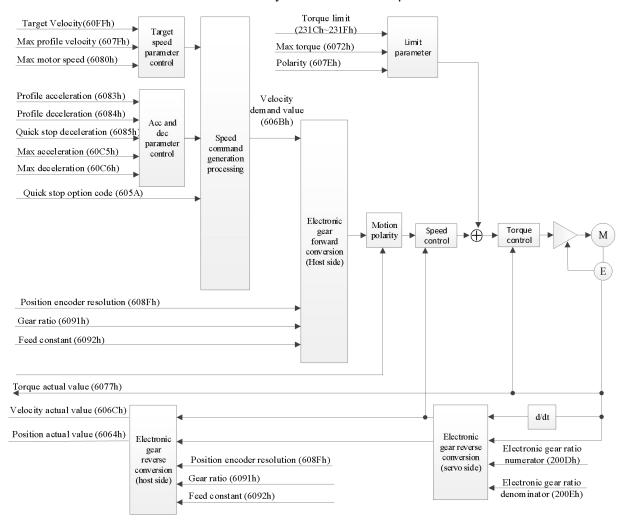
7.6.2 Common parameters

PP Control mode associated object(Command setting)

PP Control mode associated obje	8/	
Register	Explanation	Unit
RXPDO[0x6040]	Controlword	-
RXPDO[0x6060]	Control mode is PP(Profile position control	
	mode), set to 1	-
RXPDO[0x607A]	Target position	Command unit
RXPDO[0x6072]	Max torque	0.1%
RXPDO[0x607F]	Max profile velocity	Command unit /s
RXPDO[0x6080]	Max motor speed	r/min
RXPDO[0x6081]	Profile velocity	Command unit /s
RXPDO[0x6083]	Profile acceleration	Command unit /s ²
RXPDO[0x6084]	Profile deceleration	Command unit /s ²
RXPDO[0x60C5]	Max acceleration	Command unit /s ²
RXPDO[0x60C6]	Max deceleration	Command unit /s ²
RXPDO[0x6065]	Following error window	Command unit
RXPDO[0x6066]	Following error time out	ms
RXPDO[0x6067]	Position window	Command unit
RXPDO[0x6068]	Position window time	ms

Note:

- (1) 6081h (Profile velocity) is limited by the smaller of 607Fh (Max profile velocity) and 6080h (Max motor speed.
- (2) The set values of 607Fh (Max profile velocity) or 6080h (Max motor speed) are changed during the operation and are not reflected in the operation.


PP control mode associated object(Command monitoring)

	J (
Register	Explanation	Unit
TXPDO[0x6041]	Statusword	-
TXPDO[0x6063]	Position actual internal value	Command unit
TXPDO[0x6064]	Position feedback	Command unit
TXPDO[0x606C]	Velocity feedback	Command unit /s
TXPDO[0x6077]	Torque actual value	0.1%
TXPDO[0x60F4]	Following error actual value	Command unit

7.7 PV mode

PV(Profile speed control mode), specify the target speed, acceleration and deceleration, etc., and generate the speed control mode of position command action in the servo driver.

Please use this control mode in the communication cycle of more than 500µs.

7.7.1 Related parameters

1)PV control mode related parameters(Command · setting)

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6040h	00h	Controlword	-	0~65535	U16	rw	RxPDO
607Fh	00h	Max profile velocity	Command unit/s	0~4294967295	U32	rw	RxPDO
6083h	00h	Profile acceleration	Command unit/s²	0~4294967295	U32	rw	RxPDO
6084h	00h	Profile deceleration	Command unit/s²	0~4294967295	U32	rw	RxPDO
60C5h	00h	Max acceleration	Command unit/s²	0~4294967295	U32	rw	RxPDO
60C6h	00h	Max deceleration	Command unit/s²	0~4294967295	U32	rw	RxPDO

Other speed control common related objects

Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
6072h	00h	Max torque	0.1%	0~65535	U16	rw	RxPDO
6080h	00h	Max motor	r/min	0~4294967295	U32	rw	RxPDO

		speed					
60B1h	00h	Velocity	Command	-2147483648~2147483647	I32	rw	RxPDO
		offset	unit/s				
60B2h	00h	Torque offset	0.1%	-32768~32767	I16	rw	RxPDO
60FFh	00h	Target	Command	0~4294967295	U32	rw	RxPDO
		velocity	unit/s				

Other related objects with common actions

Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
605Ah	00h	Quick stop option code	-	0~7	I16	rw	NO
605Bh	00h	Shutdown option code	-	0~1	I16	rw	NO
605Ch	00h	Diasble operation option code	-	0~1	I16	rw	NO
605Dh	00h	Halt option code	-	1~3	I16	rw	NO
605Eh	00h	Fault reaction option code	-	0~2	I16	rw	NO
607Bh	-	Position range limit	-	-	-	-	-
	00h	607Bh sub index numbers	-	2	U8	ro	NO
	01h	Min position limit	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
	02h	Max position limit	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
607Ch	00h	Home offset	Command unit	-2147483648~ 2147483647	I32	rw	RxPDO
607Eh	00h	Polarity	-	0~255	U8	rw	NO
6085h	00h	Quick stop deceleration	Command unit/s ²	0~4294967295	U32	rw	RxPDO
608Fh	-	Position encoder resolution	-	-	-	-	-
	00h	608Fh sub index numbers	-	2	U8	ro	NO
	01h	Encoder increments	pulse	1~4294967295	U32	ro	NO
	02h	Motor revolutions	r(motor)	1~4294967295	U32	ro	NO
6091h	-	Gear ration	-	-	-	-	-
	00h	6091h sub index numbers	-	2	U8	ro	NO
	01h	Motor revolutions	r(motor)	1~4294967295	U32	ro	NO
	02h	shaft revolutions	r(shaft)	1~4294967295	U32	ro	NO
6092h	-	Feed constant	-	-	-	-	-
	00h	6092h sub index numbers	-	2	U8	ro	NO
	01h	Feed value	Command unit	1~4294967295	U32	ro	NO
	02h	Shaft revolutions	r(shaft)	1~4294967295	U32	ro	NO
60B8h	00h	touch	-	0~65535	U16	rw	RxPDO

Controlword (6040h)< functions in pv control mode>

Index	Sub-index	Name	R	lange	Data	type		access	S	PD	О	Op-mode
6040h	00h	Controlw	ord 0~	0~65535		J16		rw		RxP	DO	All
		Set the co	the control command to the servo driver such as PDS state						state c	onversi	on.	
		Bit inforr	ormation									
		15	14 13 12 11 10					0	9	8		
					r					om	h	
		7	6	5		4		3	2	1	0	
		fr		on	1S			eo	qs	ev	so	
			r r r									
		r = reserv	ved(not cor	respondin	ıg)	fr = fa	ult re	eset				

	oms = operation mode specific	eo = enable operation	
	(control mode is based on bit)	qs = quick stop	
	h = halt	$ev = enable \ voltage$	so = switch on

Pv mode doesn't use oms bit.

Speed related parameters

_	erated param									
Index	Sub-index	Name	Unit	Range	Data	access	PDO	OP-mode		
					type					
607Fh	00h	Max profile velocity	Command	0~4294967295	U32	rw	RxPDO	PP		
		1	unit/s					PV		
								HM		
		the speed limit value in speed mode (PV).	profile positi	on mode (PP), ori	gin rese	t position	mode (HI	M), profile		
		The maximum value is	limited by 60	80h (max motor s	peed) fo	or interna	l processin	g.		
6080h	00h	Max motor speed	r/min	0~4294967295	U32	rw	RxPDO	PV		
		-						TQ		
								CSV		
								CST		
		Set the maximum speed	of the motor	•						
		When the control power	r is put into o	peration, the maxi	mum sp	eed read	out from t	he motor		
		is set.			_					
		The maximum value is limited by the maximum speed read from the motor according to the								
		internal processing.								
		In TQ and CST, the spe	ed is limited	by the set value of	this ob	ject.				

Acceleration and deceleration related parameters

Index	Sub-index	Name	Unit	Range	Data	access	PDO	OP-		
					type			mode		
6083h	00h	Profile acceleration	Command	0~4294967295	U32	rw	RxPDO	PP		
			unit/s²					PV		
		Set profile acceleration	on.							
		When set to 0, interna	al processing is	treated as 1.						
6084h	00h	Profile deceleration	Command	0~4294967295	U32	rw	RxPDO	PP		
			unit/s²					PV		
		Set profile deceleration	on.							
		When set to 0, interna	l processing is	treated as 1.						
60C5h	00h	Max acceleration	Command	0~4294967295	U32	rw	RxPDO	PP		
			unit/s²					PV		
								HM		
		Set the maximum acc								
		When set to 0, interna	l processing is							
60C6h	00h	Min deceleration	Command	0~4294967295	U32	rw	RxPDO	PP		
			unit/s²					PV		
								HM		
		1	et the maximum deceleration.							
		When set to 0, interna	al processing is	treated as 1.						

2)pv control mode related parameters(monitoring)

2)pv co		erated parameters(monitoring)	!				
Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
6041h	00h	Statusword	-	0~65535	U16	ro	TxPDO
6065h	00h	Position offset too large	Command	0~4294967295	U32	rw	RxPDO
		threshold	unit/s				
6066h	00h	Velocity time out	1ms	0~65535	U16	rw	RxPDO
6067h	00h	Velocity threshold	Command	0~4294967295	U32	rw	RxPDO
			unit/s				
6068h	00h	Velocity threshold time	1ms	0~65535	U16	rw	RxPDO

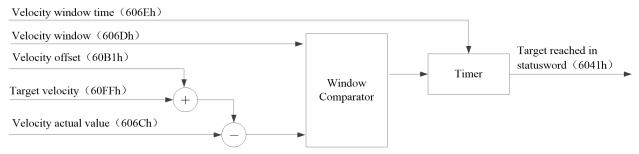
Other related objects with common speed control

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6063h	00h	Position actual	pulse	-2147483648~	I32	ro	TxPDO

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
		internal value		2147483647			
6064h	00h	Position actual value	Command	-2147483648~	I32	ro	TxPDO
			unit	2147483647			
606Bh	00h	Velocity demand	Command	-2147483648~	I32	ro	TxPDO
		value	unit/s	2147483647			
606Ch	00h	Velocity actual value	Command	-2147483648~	I32	ro	TxPDO
			unit/s	2147483647			
6074h	00h	Torque demand	0.1%	-32768~32767	I16	ro	TxPDO
6076h	00h	Motor rated torque	Mn⋅m	0~4294967295	U32	ro	TxPDO
6077h	00h	Torque actual value	0.1%	-32768~32767	I16	ro	TxPDO

Other related objects with common modes

Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
603Fh	00h	Error code	-	0~65535	U16	ro	TxPDO
60B9h	00h	Touch probe status	-	0~65535	U16	ro	TxPDO
60BAh	00h	The rising edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 1	unit	2147483647			
60BBh	00h	The falling edge clamping	Command	-2147483648	I32	ro	TxPDO
		position of Touch probe 1	unit	~2147483647			
60BCh	00h	The rising edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 2	unit	2147483647			
60BDh	00h	The falling edge clamping	Command	-2147483648~	I32	ro	TxPDO
		position of Touch probe 2	unit	2147483647			

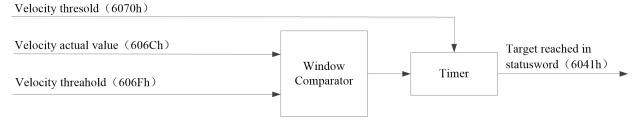

Statusword (6041h) < functions of pv control mode >

Index	Sub-index	Name/	descripti	ion	Range	Da	ıta type	Access]	PDO	Op-mode
6041h	00h	Stat	tusword		0~65535		U16	ro	T	xPDO	All
		Servo	driver st	atus							
		Bit info	ormation	1							
		15	14	13	12	11		10	9	8	
			r		oms	ila	ila oms		rm	r	
				r	speed		Target reached				
		7	6	5	4	3	2		1	0	
		W	sod	qs	ve	f		oe	so	rsto	
		r = resc	erved(no	t corre	sponding)		W	= warning			
		sod = s	witch or	n disab	led						
		oms =	operatio	n mode	e specific		qs = quick stop				
		`			d on bit)		V	e = voltage ei	nabled		
			ternal li			f = fault					
		oe = op	oe = operation enabled								
		rm = re					S	o = switched	on		
		rtso = 1	ready to	switch	on						

(1)bit10(target reached(Velocity reached)):

The difference between the total value of 60FFh (target velocity) and 60B1h (velocity offset) and 606Ch (velocity actual value) is within the range set by 606Dh (velocity window). If the time set by 606Eh (velocity window time) passes, the bit10 of 6041h (status word) becomes 1.

Bit	Name	Value	Definition				
10	Target reached	0	Halt = 0 (normal): speed control not completed				
			Halt = 1 (stop according to halt): shaft in deceleration				
		1	Halt = 0 (normal): speed control completed				
			Halt = 1 (according to halt stop): shaft stop (shaft speed is 0)				

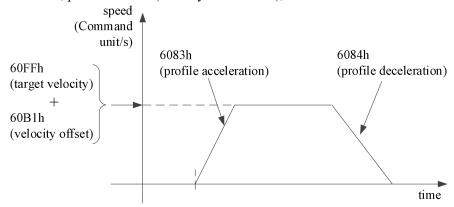

Index	Sub-index	Name	Unit	Range	Data	Access	PDO	OP-		
					type			mode		
606Dh	00h	Velocity window	Command unit	0~4294967295	U32	rw	RxPDO	PV		
		The difference between the total value of 60FFh (target velocity) and 60B1h (velocity offset) and 606Ch (velocity actual value) is within the set value of this parameter. If the time set by 606Eh (velocity window time) passes, set the bit10 (target reached) of 6041h (status word) to 1 as the threshold value. If the speed deviation is a value other than the set value of this parameter, bit10 of 6041h becomes 0.								
606Eh	00h	Velocity window time	1ms	0~65535	U16	rw	RxPDO	PV		
		Set the time from the point when the difference between the sum of 60FFh(target velocity) and 60B1h (velocity offset), and 606Ch(velocity actual value), fall within the range set by 606Dh (Velocity window) to bit10 (target reached) of 6041h (Statusword) becomes 1.								

(2)bit12(speed)

When 606Ch (Velocity actual value) exceeds the value set in 606Fh (Velocity threshold) and the time set by 6070h (Velocity threshold time) has elapsed, bit 12 of 6041h (Statusword) changes to 0.

When 606Ch (Velocity actual value) becomes lower than the value set in 606Fh (Velocity threshold), bit12 of 6041h (Statusword) changes to 1, which indicates that the motor has stopped.

Bit	Name	Value	definition
10	speed	0	Motor is operating
		1	Motor is not operating


< Speed (functional overview) >

Index	Sub-index	Name	Unit	Range	Data		PDO	OP-				
					type			mode				
606Fh	00h	Velocity threshold	Command	0~4294967295	U32	rw	RxPDO	PV				
			unit									
		606Ch (speed feedback) exceeds the set value of this parameter. If 6070h (velocity threshold										
		time) has passed, set	time) has passed, set the threshold of bit12 (speed) for 6041h (status word) to 0.									
		If the speed is below	the set value of	of this parameter, b	oit12 of 604	1h beco	mes 1.					
6070h	00h	Velocity threshold	1ms	0~65535	U16	rw	RxPDO	PV				
		time										
		Set the time from the	Set the time from the point when 606Ch (Velocity actual value) exceeds the value set to									
		606Fh (Velocity three	eshold) until the	e point when bit 1	2 of 6041h (Statusw	ord) chang	ges to 0.				

4) PV operations

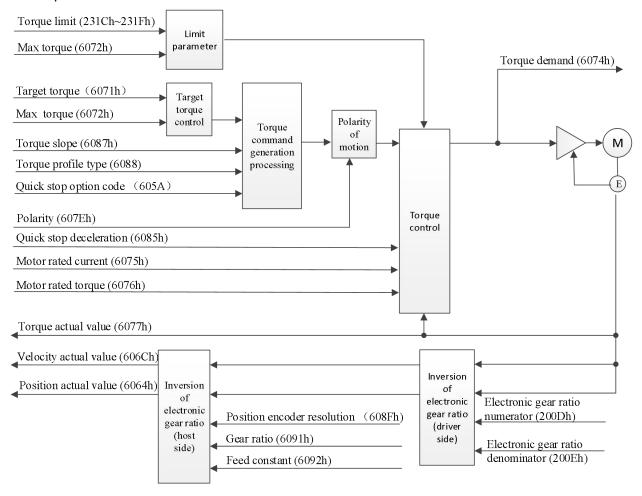
• Profile velocity control mode generates a velocity command value according to the following parameters

- Target velocity(60FFh)
- Velocity offset(60B1h)
- Profile acceleration(6083h)
- Profile deceleration(6084h)
- Target speed is 60FFh(Target velocity)
- Speed feedforward is 60B1h(Velocity offset) cannot support now
- The update (sending) of action command is that after the servo enable is turned on, please input it after about 100ms.
- As test information, provide 606Ch (velocity actual value), etc.

• The 60FFh (target velocity) is limited by 607Fh (max profile velocity) and 6080h (max motor speed).

7.7.2 Common parameters

PV control mode related objects(Command · setting)


Register	Explanation	Unit
RXPDO[0x6040]	Controlword	-
RXPDO[0x6060]	Set to 3	-
RXPDO[0x60FF]	Target velocity	Command unit/s
RXPDO[0x6072]	Max torque	0.1%
RXPDO[0x607F]	Max profile velocity	Command unit/s
RXPDO[0x6080]	Max motor speed	r/min
RXPDO[0x6083]	Internal acceleration	Command unit/s ²
RXPDO[0x6084]	Internal deceleration	Command unit/s ²
RXPDO[0x60C5]	Max acceleration	Command unit/s ²
RXPDO[0x60C6]	Max deceleration	Command unit/s ²
RXPDO[0x606D]	Velocity reached threshold	Command unit/s
RXPDO[0x606E]	Velocity timeout	ms
RXPDO[0x606F]	Velocity threshold	Command unit/s
RXPDO[0x6070]	Velocity threshold time	ms

PV control mode realated objects(Command · monitoring)

Register	Explanation	Unit		
TXPDO[0x6041]	Statusword	-		
TXPDO[0x6064]	Position feedback (motor actual position)	Command unit		
TXPDO[0x606C]	Velocity feedback	Command unit/s		
TXPDO[0x6077]	Torque actual value	0.1%		

7.8 TQ mode

TQ(Profile torque mode), specify target torque, acceleration and deceleration, etc., this torque control mode after generating position command in servo driver. Please use this control mode in the communication period of more than 500μs.

7.8.1 Related parameters

1)TQ control mode related objects(Command · setting)

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6040h	00h	Controlword	-	0~65535	U16	rw	RxPDO
6088h	00h	Torque profile	-	-32768~32767	I16	rw	RxPDO
		type					

Other related objects that are common to torque control

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6071h	00h	Target torque	0.1%	-3276~32767	I16	rw	RxPDO
6072h	00h	Max torque	0.1%	0~65535	U16	rw	RxPDO
6080h	00h	Max motor speed	r/min	0~4294967295	U32	rw	RxPDO
6087h	00h	Torque slope	0.1%/S	0~4294967295	U32	rw	RxPDO
60B2h	00h	Torque offset	0.1%	-32768~32767	I16	rw	RxPDO

Other related objects with common actions

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
605Ah	00h	Quick stop option code	-	0~7	I16	rw	NO
605Bh	00h	Shutdown option code	-	0~1	I16	rw	NO
605Ch	00h	Disable operation option	-	0~1	I16	rw	NO
		code					
605Dh	00h	Halt option code	-	1~3	I16	rw	NO

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
605Eh	00h	Fault reaction option	-	0~2	I16	rw	NO
		code					
607Bh	-	Position range limit	-	-	-	-	-
	00h	607Bh sub index	-	2	U8	ro	No
		numbers			I32		
	01h	Min position limit	Command	I		rw	RxPDO
			unit	2147483647			
	02h	Max position limit	Command	-2147483648~	I32	rw	RxPDO
			unit	2147483647			
607Ch	00h	Home offset	Command	-2147483648~	I32	rw	RxPDO
			unit	2147483647			
607Eh	00h	Polarity	-	0~255	U8	rw	NO
6085h	00h	Quick stop deceleration	Command unit/s ²	0~4294967295	U32	rW	RxPDO
6086h	00h	Motion profile type	-	-32768~32767	I16	rw	RxPDO
608Fh	-	Position encoder resolution	-	-	-	-	-
	00h	608Fh sub index numbers	-	2	U8	ro	NO
	01h	Encoder increments	pulse	1~4294967295	U32	ro	NO
	02h	Motor revolutions	r(motor)	1~4294967295	U32	ro	NO
6091h	-	Gear ratio	-	-	-	-	-
	00h	6091h sub index numbers	-	2	U8	ro	NO
	01h	Motor revolutions	r(motor)	1~4294967295	U32	ro	NO
	02h	Shaft revolutions	r(shaft)	1~4294967295	U32	ro	NO
6092h	-	Feed constant	-	-	-	-	-
	00h	6092h sub index numbers	-	2	U8	ro	NO
	01h	Setting feed value	Command unit	1~4294967295	U32	ro	NO
	02h	Shaft revolutions	r(shaft)	1~4294967295	U32	ro	NO
60B8h	00h	Touch probe function	-	0~65535	U16	rw	RxPDO

Controlword (6040h)< functions in TQ control mode >

Index	Sub-index	Name	_	lange	Data	type		Acces	s	PD	О	Op-mode
6040h	00h	Controlwo	rd 0~	65535	U	16 r		rw		w RxPDO		All
		Set the cor	ntrol com	mand to th	ne servo	driver su	ch as	PDS	state c	onversi	on.	
		Bit inform	ation									_
		15	15 14 13 12 11 10 R					0	9	8		
									om	h		
		7	6	5		4		3	2	1	0	
		fr		0	oms			eo	qs	ev	so	
			r	r		r]
		r = reserve	d(not cor	respondin	g)	fr = fa	ult re	eset				
		oms = ope				eo = e	enable	e opera	ation			
		`	(control mode is based on bit)				qs = quick stop					
		h = halt	ılt			ev = enable voltage			age			
		so = switch	n on									

TQ mode doesn't use oms bit.

Torque type

Inde	x Sub-index	Name	Unit	Range	Data type	access	PDO	OP-mode				
6087	h 00h	Torque slope	0.1 %	0~4294967295	U32	rw	RxPDO	tq				
								cst				
		Set a parameter val	• Set a parameter value for giving slope to a torque command.									
		• In the cyclic synchi	• In the cyclic synchronous torque mode (cst), torque slope is effective only during the									
		deceleration stop sec	uence.									

		• When 0 has been set, the setting is regarded as 1 internally.								
6088h	00h	Torque profile type	-	-32768~32767	I16	rw	RxPDO	tq		
		Set the torque profile type used for changing in the torque								
		0:linear slope			_					
		1:Not supported								

2)TQ control mode related objects(monitoring)

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
6041h	00h	Statusword	-	0~65535	U16	ro	TxPDO
6073h	00h	Max current	0.1%	0~65535	U16	ro	NO

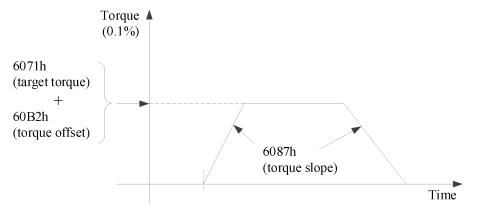
Other objects commonly associated with torque control (monitoring)

Index	Sub-index	Name	Unit	Range	Data	Access	PDO
					type		
6063h	00h	Actual internal position	pulse	-2147483648~	I32	ro	TxPDO
		feedback		2147483647			
6064h	00h	Position feedback	Command	-2147483648~	I32	ro	TxPDO
			unit	2147483647			
606Ch	00h	Velocity feedback	Command	-2147483648~	I32	ro	TxPDO
		-	unit/s	2147483647			
6074h	00h	Torque command	0.1%	-32768~32767	I16	ro	TxPDO
6075h	00h	Motor rated current	1mA	0~4294967295	U32	ro	TxPDO
6076h	00h	Motor rated torque	Mn⋅m	0~4294967295	U32	ro	TxPDO
6077h	00h	Torque actual value	0.1%	-32768~32767	I16	ro	TxPDO
6078h	00h	Current actual value	0.1%	-32768~32767	I16	ro	TxPDO

Other associated objects that share the same mode

Index	Sub-index	Name	Unit	Range	Data	access	PDO
					type		
603Fh	00h	Error code	-	0~65535	U16	ro	TxPDO
60B9h	00h	Touch probe status	-	0~65535	U16	ro	TxPDO
60BAh	00h	The rising edge clamping position	Command	-2147483648~	I32	ro	TxPDO
		of Touch probe 1	unit	2147483647			
60BBh	00h	The falling edge clamping position	Command	-2147483648~	I32	ro	TxPDO
		of Touch probe 1	unit	2147483647			
60BCh	00h	The rising edge clamping position	Command	-2147483648~	I32	ro	TxPDO
		of Touch probe 2	unit	2147483647			
60BDh	00h	The falling edge clamping position	Command	-2147483648~	I32	ro	TxPDO
		of Touch probe 2	unit	2147483647			

Statusword (6041h) < functions of TQ control mode >


Index	Sub-index	Name		Range	D	ata type	Access	P]	DO	Op-mode
6041h	00h	Statuswor	d 0	~65535		U16	ro	TxPDO		All
		Servo driv	er statı	ıs						
		Bit inform	ation							
		15	14	13	12	11	10	9	8	
		r		or	ns	ila	oms	rm	r	
			_		r		target reached			
		7	6	5 4		3	2	1	0	
		W	sod	qs	ve	f	oe	so	rsto	
		r = reserve	ed(not o	correspoi	nding)		w = warning			
		sod = swit	ch on c	lisabled						
		oms = ope		_			qs = quick stop			
		(Control n			ı bit)		ve = voltage enab	oled		
		ila = interi	nal limi	t active			f = fault			
		oe = opera	ition en	abled						
		rm = remo				so = switched on				
		rtso = reac	ly to sv	vitch on						

bit13,12,10(operation mode specific):

Bit	Name	Value	Definition
10	Target reached	0	halt=0 (normal): 6074h (Torque demand) not reach the target torque halt=1 (stop as halt): shaft is decelerating
		1	halt=0 (normal): 6074h (Torque demand) reach the target torque halt=1 (stop as halt): shaft stops (shaft speed is 0)
12	reserved	-	Not used
13	reserved	-	Not used

Action of TQ control mode

- The profile torque control mode generates torque command values based on the following parameters.
- Target torque(6071h)
- Torque offset(60B2h)(cannot support)
- Torque slope(6087h)
- For the operation command update(transmission), do input when approx 100ms has elapsed after the servo ON(operation enabled command)
- As monitoring information, we provide 6077h(Torque actual value) etc.

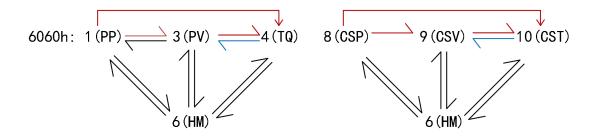
- The 6071h (target torque) value is 6072h (max torque), 2312h (P3-28), 2313h (P3-29), which is limited by the minimum value.
- The speed is limited by 6080h (max motor speed).

7.8.2 Common parameters

TQ control mode related objects(Command · setting)

Register	Explanation	Unit
RXPDO[0x6040]	Controlword	-
RXPDO[0x6060]	Set to 4	-
RXPDO[0x6071]	Target torque	0.1%
RXPDO[0x6072]	Max torque	0.1%
RXPDO[0x6080]	Max motor speed	r/min
RXPDO[0x6087]	Torque slope	0.1%/S
RXPDO[0x6088]	Torque Profile type	-

TQ control mode related objects(Command · monitoring)


Register	Explanation	Unit	
TXPDO[0x6041]	Statusword	-	
TXPDO[0x6064]	Position feedback (motor actual position)	Command unit	
TXPDO[0x606C]	Velocity feedback	Command unit/s	
TXPDO[0x6077]	Torque actual value	0.1%	

TQ mode does not use oms bit.

7.9 Mode common function

7.9.1 Mode mutual switching function

DS5C2 supports mode switching during runtime, with a mode switching time of 2ms. In the servo enabled state, it supports position mode switching to speed mode, position mode switching to torque mode, and speed mode switching to torque mode, making it convenient for users to achieve multi-mode switching control in project engineering.

7.9.2 Stop mode

PDS is a motor deceleration stop method for setting the main power supply interruption or alarm occurrence in the operation enabled state (servo enabled state).

The deceleration function (selection code) defined by COE (CIA402) and the deceleration function (free running stop, deceleration stop) on the servo (DS5C2) side are combined.

PDS code list

Index	Sub-index	Name	Unit	Range	Data type	Access	PDO
605Ah	00h	Quick stop option code	ı	0~7	I16	rw	NO
605Bh	00h	Shutdown option code	1	0~1	I16	rw	NO
605Ch	00h	Disable operation option	-	0~1	I16	rw	NO
		code					
605Dh	00h	Halt option code	-	1~3	I16	rw	NO
605Eh	00h	Fault reaction option code	-	0~2	I16	rw	NO

Related object list

Index	Sub-index	Name	Unit	Range	Data	Access	PDO	OP-	
					type			mode	
6084h	00h	Profile deceleration	Command unit/s²	0~4294967295	U32	rw	RxPDO	PP PV HM CSP CSV	
		Set profile deceleration. When set to 0, internal processing is treated as 1.							
60051	00h	Quick stop deceleration	Command unit/s ²	0~4294967295	U32	rw	RxPDO	PP PV HM CSP CSV	
6085h		• If 605Ah (Quick stop option code) is "2" or "6", set the deceleration parameter of motor deceleration stop when quick stop. • 605Dh (Halt option code) and 605Eh (Fault reaction option code) are also used when they are "2".							

Index	Sub-index	Name	Unit	Range	Data	Access	PDO	OP-			
					type			mode			
	00h	Torque slope	0.1%	0~4294967295	U32	rw	RxPDO	TQ			
6087h							Ten De	CST			
000711	OOII	 Set the parame 	ter value to give	e the inclination torqu	ie comm	and.					
		 Only decelerate 	ion stop time is	valid in cyclic synch	ronous to	orque mode	e (CST).				
		Homing	Command	0~4294967295	U32	rw	RxPDO	HM			
	00h	acceleration	unit/s²								
609Ah		• Set the acceleration and deceleration of the origin point reset position control mode (HM									
009An		The deceleration of the origin reset position control mode (HM) is also used for this o									
		• when each homing method finally stops(when the origin position is detected), it is									
		unnecessary to us	e the set value	of this object, and the	e servo lo	ck stops.					
		Max	Command					PP			
		deceleration	unit /s²	0~4294967295	U32	rw	RxPDO	HM			
60C6h	00h	deceleration	unit/s					CSP			
oocon	OON	• Set the maxim	Set the maximum deceleration.								
		• If it is set to 0,	internal process	sing is operated as 1.							

1) Quick stop option code (605Ah)

Set the motor deceleration stop method when PDS command [Quick stop] is received.

Quick stop option code pp,csp,csv,pv 0: after motor stop through so disabled. 1: after motor stop through 60 2: after motor stop through 60 3: after motor stop through 60 5: after motor stop through 60 6: after motor stop through 60 7: after motor stop through 60 hm 0: after motor stop through 60 hm 0: after motor stop through 60 1: after motor stop through 60	084h (I 085h (0 0C6h (I 084h (I 085h (0 0C6h (I	Profile de Quick sto Max dece Profile de Quick sto Max dece ce at Serv	ecceleration), mip op deceleration), eleration), mig ecceleration), mip op deceleration) eleration), migrat	igrate to Switch), migrate to S rate to Switch igrate to Quich), migrate to Q rate to Quick s	ch on di Switch o on disa k stop a Quick sto stop act	sabled. n disabled. bled. ctive. op active. ive.
0: after motor stop through so disabled. 1: after motor stop through 60 2: after motor stop through 60 3: after motor stop through 60 5: after motor stop through 60 6: after motor stop through 60 7: after motor stop through 60 hm 0: after motor stop through 60 1: after motor stop through 60	084h (I 085h (0 0C6h (I 084h (I 085h (0 0C6h (I	Profile de Quick sto Max dece Profile de Quick sto Max dece ce at Serv	ecceleration), mip op deceleration), eleration), mig ecceleration), mip op deceleration) eleration), migrat	igrate to Switch), migrate to S rate to Switch igrate to Quich), migrate to Q rate to Quick s	ch on di Switch o on disa k stop a Quick sto stop act	sabled. n disabled. bled. ctive. op active. ive.
2: after motor stop through 60 3: after motor stop through 60 5: after motor stop through 60 6: after motor stop through 60 7: after motor stop through 60 cst, tq 0: after motor stop through so disabled. 1, 2: after motor stop through 3: after motor stop through to	0C6h (1 09Ah (1 085h (0 0C6h (1 ervo sid	Quick sto Max dece Homing a Quick sto Max dece de (Seque	op deceleration), migrated by deceleration), migrated by deceleration, migrated by deceleration, migrated by deceleration by deceleration, migrated by deceleration by deceler), migrate to S rate to Switch migrate to Qui), migrate to Q rate to Quick s off), migrate to te to Switch or	Switch of on disatick stop Quick stop act	n disabled. bled. active. op active. ive.

Deceleration stop examples according to the Quick stop command:

A: if 6040h: bit2 (control word: quick stop) changes from 1 to 0, it starts to slow down and stop.

The PDS status in deceleration changes to quick stop active.

B: the motor stops when the actual speed is less than 10r / min.

The PDS status after stopping is switch on disabled, or it changes to quick stop active.

2) Shutdown option code (605Bh)

Set the motor deceleration stop method when PDS command [Shutdown] and [Disable voltage] are received.

Index	Sub-index	Name	Units	Range	Data type	Access	PDO	OP-mode
	Shutdown option code - 0~1 I8 rw RxPDO							
605Bh	00h	Set the timing when PDS commodifferent according to the define The settings except the following (1) receiving PDS command [1] pp, csp, csv, pv (2) after motor stop through serion. 1: after motor stop through 608 (2) receiving PDS command [1] pp, csp, csv, pv 0: after motor stop through 608 hm 0: after motor stop through 608 hm 0: after motor stop through 608 cst, tq 0: after motor stop through 609 cst, tq 0: after motor stop through 609 cst, tq 1: after motor stop through 608 ition of ang value Shutdown side S4h (Profestor Side S7h (Toro Disable Servo side S4h (Profestor Servo side S4h (Profestor Servo side S4h (Profestor Servo side Servo side S4h (Profestor Servo side Servo side Servo side S4h (Profestor Servo side Servo si	control mess are not we will be a seem of we will be a seem of the	ode. allowed. e at Servo- eration), mig e at Servo- eleration), n e at Servo- o, migrate to ence at Se eration), mig ence at Se eleration), mig ence at Se eleration), n ence at Se	off), migrate to Recoff), migrate to I off), migrate to I off), migrate to Sv rvo-off), migrate to Sv rvo-off)	eady to swinter to Ready to switch on. Migrate to witch on disconsignate to Switch on disconsignate to the switch on disconsignate the switch on disconsignate the switch on disconsignate the switch disconsignate t	y to switch tch on. y to switch witch on. y to switch Switch on tabled. Switch on disabled.	

The slowing down stop examples according to shutdown command:

A: if receiving PDS command "shutdown" to deceleration stop.

PDS status in deceleration remains operation enabled.

B: the motor stops when the actual speed is less than 10r / min.

The PDS status after stopping is Ready to switch on.

3) Disable operation option code(605Ch)

Set the motor deceleration stop method when receiving the PDS command 「Disable operation」.

Index	Sub-	Name	Units	Range	Datatype	Access	PDO	OP-mode
	index							
605Ch	00h	Disable operation option code	-	0~1	I8	rw	RxPDO	ALL
		Set the timing when PDS comm	and [dis	able oper	ration] is reco	eived. It is di	fferent acc	ording to
		the definition of control mode.						
		The settings except the followin	The settings except the following values are not allowed.					
		pp, csp, csv, pv	pp, csp, csv, pv					
		0: after motor stop through servo side (Sequence at Servo-off), migrate to Switched on.						
		1: after motor stop through 6084h (Profile deceleration), migrate to Switched on.						
		hm						
		0: after motor stop through serve	o side (S	Sequence	at Servo-off), migrate to	Switched of	on.

1: after motor stop through 609Ah (Homing acceleration), migrate to Switched on.
cst, tq 0: after motor stop through servo side (Sequence at Servo-off), migrate to Switched on.
1: after motor stop through 6087h (Torque slope), migrate to Switched on.

The slowing down stop examples according to Disable operation command:

A: if receiving PDS command "Disable operation" to deceleration stop.

PDS status in deceleration remains operation enabled.

B: the motor stops when the actual speed is less than 10r / min.

The PDS status after stop is Switched on.

5) Halt option code(605Dh)

Set motor decelerating stop method when bit8 of 6040h(controlword)is 1.

Index	Sub-	Name	Units	Range	Data	Access	PDO	OP-
	index				type			mode
605Dh	00h	Halt option code	-	1~3	I16	rw	NO	ALL
		Set the timing when P	DS com	mand [dis	sable operation] is received. It	is differ	ent according to
		the definition of contr	ol mode.					
		• set the timing of Ha	alt action	. It is diff	erent according	g to the definiti	ion of co	ntrol mode.
		The settings except th	e followi	ng values	s are not allowe	ed.		
		pp, csp, csv, pv						
		1: after motor stop thr	_			/· I I		
		2: after motor stop thr	_			// 1		
		3: after motor stop thr enabled.	ougn 60	/2n (Max	torque), 60C6	n (Max decelei	ration) Ke	eeps Operation
		chaoicu.						
		hm						
		1: after motor stop thr	ough 609	Ah (Hor	ning acceleration	on), keep Oper	ation ena	ıbled.
		2: after motor stop thr	_	,	_	/ 1		
		3: after motor stop thr	ough 607	72h (Max	torque), 60C6	h(Max decelerate	ation), ke	ep Operation
		enabled.						
		cst, tq						
		1, 2: after motor stop	_		1 /		enabled.	
		3: after motor stop thr	ough tor	que 0, ke	ep Operation en	nabled.		

Examples of slowing down and stop according to the halt function

A: if 6040h: bit8 (control word: halt) changes from 0 to 1, it deceleration stops. PDS status in deceleration remains operation enabled.

B: the motor stops when the actual speed is less than 10 r/min. The PDS state after stop remains operation enabled.

6) Fault reaction option code(605Eh)

Set the motor stop method when alarm occurs.

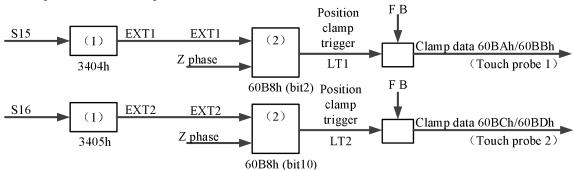
Index	Sub-	Name	Units	Range	Data	Access	PDO	OP-
	index				type			mode
605Eh	00h	Fault reaction option code	-	0~2	I16	rw	NO	ALL
		Set the timing when the alarm	occurs.	It is diffe	rent according	g to the defini	tion of c	ontrol
		mode.						
		The settings except the following	ing valu	es are not	allowed.			
		(1) When the Err80.0 \sim 80.7, 8	(1) When the Err80.0 \sim 80.7, 81.0 \sim 81.7, 85.0 \sim 85.7, 88.0 \sim 88.7 occured					
		pp, csp, csv, pv	pp, csp, csv, pv					
		0: after motor stop through ser	0: after motor stop through servo side (Sequence at alarm), migrate to Fault.					
		1: after motor stop through 6084h (Profile deceleration), migrate to Fault.						
		2: after motor stop through 6085h (Quick stop deceleration), migrate to Fault.						
		hm						
		0: after motor stop through ser	vo side	(Sequenc	e at alarm), m	igrate to Faul	t.	

1: after motor stop through 609Ah (Homing acceleration), migrate to Fault.
2: after motor stop through 6085h (Quick stop deceleration), migrate to Fault.
cst, tq
0: after motor stop through servo side (Sequence at alarm), migrate to Fault.
1, 2: after motor stop through 6087h (Torque slope), migrate to Fault.
(2) alarm except above (1) listed occurred
0, 1, 2: after motor stop through servo side (Sequence at alarm), migrate to Fault.

Deceleration stop examples according to alarm

A: if there is an alarm, it starts to slow down and stop. PDS status in deceleration is Fault reaction active.

B: the motor stops when the actual speed is less than 10 r / min. PDS status after stop is Fault.


7.9.3 Touch Probe function(position clamp request/release)

The probe function is the position locking function. When the trigger condition (EXT1 / EXT2) is met, the probe function is triggered and the motor encoder value when the condition is triggered is locked. According to the setting of probe control word 60B8, single or multiple triggering can be realized.

Note:

- (1) Probe function is not supported in HM mode.
- (2) Currently, only external signals are supported as trigger sources.

1) Touch probe function composition

60B8h:Touch probe function

60BAh:Touch probe pos1 pos value

60BBh:Touch probe posl neg value

60BCh:Touch probe pos2 pos value

60BDh:Touch probe pos2 neg value

If the trigger position is at the same point of one rotation of the motor, theoretically, the difference between the two latched probe values shall be the number of pulses sent by the motor encoder for one rotation.

It should be noted that it takes a certain time from the generation of the external trigger signal to the driver receiving the signal and performing the latch operation. Therefore, the latch value of the probe must have an error with the actual value. The error is related to the motor speed, hardware performance and software processing.

Notes for function use:

	Defaul	t value	Set when usin	g probe function
Product model	P5-62	P5-63	P5-62 (terminal)	P5-63 (terminal)
DS5C2 (7.5kw and below)	0	0	1 (SI1)	2 (SI2)
DS5C2 (15kw)	6	7	6 (P-)	7 (D-)

(1) The clamping trigger signal uses external inputs (EXT1/EXT2), and P5-62 and P5-63 are terminal assignment parameters for Touch Probe1 and Touch Probe2 functions. The default parameters for the driver probe function are shown in the table above.

60B8h (Touch probe function)					
Bit10	LT2	Bit2	LT1		
0	EXT2	0	EXT1		
1	Z phase	1	Z phase		

- (2) if the touch probe is executed to an unassigned port, E-883 (abnormal action protection) will occur.
- (3) when the clamping trigger signal is an external input (EXT1/EXT2), the acquisition error occurs. Make the speed near the clamp signal input as low as possible.
- (4) the width of input ON and OFF of clamping trigger signal shall be more than 2ms respectively.
- (5) in the following cases, touch probe is invalid (cancelled). (the value of 60B9h is cleared).
- (1) when ESM status is init
- (2) switch to HM mode
- (6) for the same touch probe, please do not set the rising edge and the falling edge at the same time. The action of setting the situation at the same time is unknown.
- (7) it should be noted that it takes a certain time from the generation of external trigger signal to the reception of signal by driver and the execution of latch operation. Therefore, the value of probe latch must have error with the actual value, and the difference is related to the motor speed, hardware performance and software processing.

2) Touch probe objects

Index	Sub-	Name	Units	Range	Data	Access	PDO
	index				type		
60B8h	00h	Touch probe function	-	0~65535	U16	rw	RxPDO
60B9h	00h	Touch probe status	1	0~65535	U16	ro	TxPDO
60BAh	00h	The rising edge clamping	Command	-2147483648~	I32	**0	TxPDO
OUDAII	UUII	position of Touch probe 1	unit	2147483647	132	ro	TXFDO
60BBh	00h	The falling edge clamping	Command	-2147483648~	I32	ro	TxPDO
OODDII	UUII	position of Touch probe 1	unit	2147483647	132	10	TXFDO
60BCh	00h	The rising edge clamping	Command	-2147483648~	I32	**0	TxPDO
OODCII	UUII	position of Touch probe 2	unit	2147483647	132	ro	TXPDO
60BDh	00h	The falling edge clamping	Command	-2147483648~	132	***	TxPDO
UUBUN	UUII	position of Touch probe 2	unit	2147483647	132	ro	IXPDO

3) Touch probe function (60B8h)

Index	Sub-	Name	Units	Range	Data	Access	PDO	OP-mode
	index				type			
60B8h	00h	Touch probe function	-	0~65535	U16	rw	RxPDO	ALL
		Execute the function setting of Touch probe.						

Related bit information

bit	Value	Note	
0	0	Switch off touch probe 1	Touch Probe 1
	1	Enable touch probe 1	execute/stop
1	0	Trigger first event	Touch Probe 1
	1	Continuous	event mode selection
2	0	Trigger with touch probe 1 input	Touch Probe 1
	1	Trigger with zero impulse signal of position encoder	Trigger selection (external input/Z phase)
3	-	Reserved	Not used
4	0	Switch off sampling at positive edge of touch probe 1	Touch Probe 1
	1	Enable sampling at positive edge of touch probe 1	Rising edge selection
5	0	Switch off sampling at negative edge of touch probe 1	Touch Probe 1
	1	Enable sampling at negative edge of touch probe 1	Falling edge selection
6-7	-	Not Supported	Not used
8	0	Switch off touch probe 2	Touch Probe 2
	1	Enable touch probe 2	execute/stop
9	0	Trigger first event	Touch Probe 2
	1	Continuous	event mode selection
10	0	Trigger with touch probe 2 input	Touch Probe 2

	1	Trigger with zero impulse signal of position encoder	Trigger selection (external input/Z phase)			
11	-	Reserved	Not used			
12	0	Switch off sampling at positive edge of touch probe 2	Touch Probe 2			
	1	Enable sampling at positive edge of touch probe 2	Rising edge selection			
13	0	Switch off sampling at negative edge of touch probe 2	Touch Probe 2			
	1	Enable sampling at negative edge of touch probe 2	Falling edge selection			
14-15	-	Not Supported	Not used			

Note:

under the same probe, do not set the rising edge and the falling edge at the same time.

4) Touch probe status (60B9h)

	Index	Sub-index	Name	Units	Range	Data type	Access	PDO	OP-mode
	60B9h	00h	Touch probe status	-	0~65535	U16	ro	TxPDO	ALL
Ι'			Touch probe function	status.					

Related bit information

Bit	Value	Note						
Dit			Touch Duck a 1 action store					
0	0	Touch probe 1 is switch off	Touch Probe 1 action stop					
	1	Touch probe 1 is enabled	Touch Probe 1 in action					
	0	Touch probe 1 no positive edge value stored	Rising edge touch probe 1 incomplete					
1			status					
1	1	Touch probe 1 positive edge value stored	Rising edge touch probe 1 complete					
	1		status					
	0	Touch probe 1 no negative edge value stored	Falling edge touch probe 1 incomplete					
	0		status					
2	1	Touch probe 1 negative edge value stored	Falling edge touch probe 1 complete					
			status					
3-5	-	Reserved	Not used					
6-7	-	Not Supported	Not used					
8	0	Touch probe 2 is switch off	Touch Probe 2 action stop					
0	1	Touch probe 2 is enabled	Touch Probe 2 in action					
	0	Touch probe 2 no positive edge value stored	Rising edge touch probe 2 incomplete					
			status					
9	1			1	Touch probe 2 positive edge value stored	Rising edge touch probe 2 complete		
			status					
	0	Touch probe 2 no negative edge value stored	Falling edge touch probe 2 incomplete					
10			status					
	1	Touch probe 2 negative edge value stored	Falling edge touch probe 2 complete					
			status					
11-13	-	Reserved	Not used					
14-15	-	Not Supported	Not used					

5) Obtained clamping position (0x60BA~0x60BD)

Index	Sub-	Name	Units	Range	Data	Access	PDO	OP-
	index				type			mode
60BAh	00h	Touch probe pos1 pos value	Command	-2147483648~	I32	ro	TxPDO	ALL
			unit	2147483647				
		Touch probe1 rising edge clamp position.						
60BBh	00h	Touch probe posl neg value	Command	-2147483648~	I32	ro	TxPDO	ALL
			unit	2147483647				
		Touch probe1 falling edge clamp position.						
60BCh	00h	Touch probe pos2 pos value	Command	-2147483648~	I32	ro	TxPDO	ALL
			unit	2147483647				
		Touch probe2 rising edge clamp position.						
60BDh	00h	Touch probe pos2 neg value	Command	-2147483648~	I32	ro	TxPDO	ALL
			unit	2147483647				
		Touch probe2 falling edge clamp position.						

6) Startup of Touch probe action

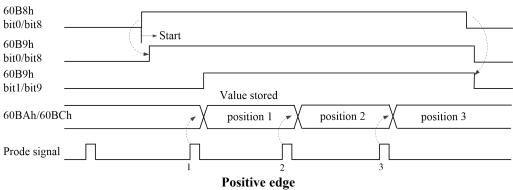
When bit0 / bit8 of 60B8h (touch probe function) is from "0 (stop) \rightarrow 1 (start)", obtain various setting conditions

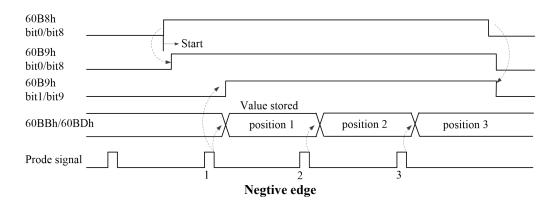
(60B8h: bit1 \sim 7 / bit9 \sim 15), and start Touch probe action.


To make the changes of various setting conditions valid, bit0 / bit8 return "0 (stop)" and then to "1 (start)" again. To switch the control mode and then use the probe function, also bit0 / bit8 return "0 (stop)" and then to "1 (start)" again.

7) Touch probe event mode

According to 60B8h (Touch probe function) bit1/bit9 (event mode selection), "0(Trigger first event mode)" and "1(Continuous mode)" can be selected.


(1) < Trigger first event mode>(60B8h:bit1=0 / bit9=0)


After starting, this mode only clamps position for the first trigger signal. In order to get it again, it is necessary to start touch probe again.

(2) < Continuous mode > (60B8h:bit1=1 / bit9=1)

After startup, this mode clamps position for every trigger signal. The obtained value will be kept for the next Probe signal.

7.9.4 Digital input(60FDh)

The bits of digital input 60FDh are represent the input status of positive limit switch (POT), negative limit switch (NOT), home switch (HOME), Touch probe 1 (Probe 1), and Touch probe 2 (Probe 2) through the functional signals assigned to the DS5C2 series servo parameters P5-22 (POT setting address), P5-23 (NOT setting address), P5-27 (HOME origin setting address), P5-62 (Probe 1 setting address), and P5-63 (Probe 2 setting address).

Digital inputs (60FDh) (version before 3791)

Index	Sub-index	Name/de		Rai	nge	Data	Access	PDO	Op-mode
						type			
60FDh	00h	Digital	inputs	0~4294	967295	U32	ro	TxPDO	All
		Represent	s the theo	retical inp	ut state to	an exteri	nal input s	ignal.	
		Bit inform	nation	_			_		
		31	30	29	28	27	26	25	24
						r			
		23	22	21	20	19	18	17	16
					r				
		15	14	13	12	11	10	9	8
						r			
		7	6	5	4	3	2	1	0
			r		tp2	tp1	hs	pls	nls
			,		esponding) pls= positive limit swi			nit switch	
		nls = nega		switch		hs=hc	me switch	1	
		tp1=Touc	h probe 1			tp2=T	Couch prob	e 2	

Bits details:

Value	Description
0	Input status OFF
1	Input status ON

The values of bit0 (reverse overtravel switch), bit1 (forward overtravel switch), bit2 (origin switch), bit3 (probe 1), bit4 (probe 2) and bit5 (Z phase output), bit16 (remote SI input1), bit17(remote SI input2), bit18 (remote SI input3) for 60FD (digital input) represent the positive signal states of driving limit input, negative driving limit input, near origin input, probe 1 input, and probe 2 input, Z phase output, remote SI input1, remote SI input2, remote SI input3 respectively.

The Z-phase output holding time is modified by the driver parameters:

Parameter	Meaning	Default value	Unit	Range	Modify	Effective
P5-19	Z-phase output holding time	2	ms	1~65535	Anytime	At once

The Z-phase output is affected by the EtherCAT communication cycle and its own software processing, resulting in poor consistency.

7.9.5 Digital output (60FEh)

The bit0 in sub object word 1 of digital output 60FEh represents the zero crossing Z-phase output status bit, and the bit0 in sub object word 2 represents the zero crossing Z-phase output enable bit. Set the Z-phase output enable bit to 1. When the encoder crosses zero, the Z-phase output status bit changes from 0 to 1. After the holding time set in P5-19, the Z-phase output status bit changes from 1 to 0. If the Z-phase output enable bit is set to 0, there is no Z-phase output state, and the value of the Z-phase output state bit is 0.

Digital output (60FEh)

Digital out	<u> </u>	111)								
Index	Sub index	Na	ame	Ra	nge	Data typ	Data type Acce		PDO	Op-mode
	0.01-	Number	of entries		2	U8		ro	NO	All
	00h	The number of Sub Index for 60FEh.							,	
		Physica	l outputs	0~4294	967295	U32		rw	RxPDO	All
		Indicates	the output	status of	the exteri	nal output s	signal for	operation		
		Bit information								
		31	30	29	28	27	26	25	24	
		r								
		23	22	21	20	19	18	17	16	
	01h			r			ros3	ros2	ros1	
		15	14	13	12	11	10	9	8	
					•	r		•		
		7	6	5	4	3	2	1	0	
		r								
		r = reserv	ed (Not cor	rrespondi	ng)				'	
		ros1= ren	note output	state1 (re	emote SC	output sta	tus 1)			
60FEh		ros2= remote output state2 (remote SO output status 2)								
OULTH		ros3= ren	note output	state3 (re	emote SC	output sta	tus 3)			
		Bit	mask	0~4294	967295	U32		rw	RxPDO	All
		Indicates the output operation host function for setting external output signals.								
		Bit information								
		31	30	29	28	27	26	25	24	
						r				
		23	22	21	20	19	18	17	16	
				r			roe3	roe2	roe1	
	02h	15	14	13	12	11	10	9	8	
						r				
		7	6	5	4	3	2	1	0	
						r				
		r = reserv	ed (Not coi	rrespondi	ng)					
1		roe1= remote output enable1 (remote SO1 output enable 1)								
		roe1= ren	note output	enable 1	(remote S	SO1 output	enable 1)		
						SO1 output SO1 output				

The details of each bit are as follows:

Subindex 01h: Physical outputs

	out the first output							
bit	Name	Value	Description					
16	Remote SO1 output status hit	0	Remote SO1 status OFF					
10	Remote SO1 output status bit	1	Remote SO1 status ON					
17	Remote SO2 output status bit	0	Remote SO2 status OFF					
1 /	Remote SO2 output status off	1	Remote SO2 status ON					
18	Parata SO2 autuut atatua hit	0	Remote SO3 status OFF					
10	Remote SO3 output status bit	1	Remote SO3 status ON					

Subindex 02h: Bit mask

bit	Name	Value	Description
16	Remote SO1 output enable bit	0	Remote SO1 output enable OFF
16	Remote SO1 output enable bit	1	Remote SO1 output enable ON
17	Domesto SO2 entmyt emphis hit	0	Remote SO2 output enable OFF
1 /	Remote SO2 output enable bit	1	Remote SO2 output enable ON

bit	Name	Value	Description
19 Domete CO2 extent englishishis	0	Remote SO3 output enable OFF	
18	Remote SO3 output enable bit	1	Remote SO3 output enable ON

The bits 16, 17, and 18 in Subindex 01h (sub object word 1) of digital output 60FEh represent the remote SO1 output status bit, remote SO2 output status bit, and remote SO3 output status bit, respectively. The bits 16, 17, and 18 in Subindex 02h (sub object word 2) represent the remote SO1 output enable bit, remote SO2 output enable bit, and remote SO3 output enable bit.

7.9.6 Position information

1) Initialization time of location information

The servo driver initializes (presets) the position information related objects in the following time sequence.

- Initialization sequence (condition):
 - When the power is put into operation
 - When communication is established (ESM status Init \rightarrow OP migration)
 - · When the original point is reset
 - · Absolute multi-turn zero clearing
- Initialization objects
 - 6062h(Position demand value)
 - 6063h(Position actual internal value)
 - 6064h(Position actual value)
 - 60FCh(Position demand internal value)

The object here is based on the Position actual internal value (6063h) that represents the feedback position of the motor, the electronic gear function described later will add Home offset, etc. according to the polarity change symbol, and initialize (preset) when the communication is established.

In addition, the changes of the set values of electronic gear ratio, Polarity and Home offset are reflected by the time sequence described later in this chapter.

Note: please refer to "initialization of absolute encoder" in Section 4 of this chapter for details of precautions for using absolute encoder.

2) Electronic gear ratio

(1) Function overview

The electronic gear is a function of multiplying the position command input from the upper computer by the electronic gear ratio set by the object as the position command of the position control unit. According to the use of this function, the motor rotation and movement amount of each command unit can be set arbitrarily.

(2) DS5C2 series electronic gear ratio setting method

Method 1: set the electronic gear ratio according to the internal parameters of the servo, please refer to chapter 5.4.1.1 for details.

Method 2:

DS5C2 series servo driver can set electronic gear ratio through the object 608Fh (Position encoder resolution), 6091h (Gear ratio), 6092h (Feed constant) specified by CoE (CiA402).

The following is mainly about setting the electronic gear ratio according to COE (CiA402).

The relationship between user-defined units (instruction units) and internal units (pulse) is calculated according to the following equation.

Calculation formula of electronic gear ratio:

Position encoder resolution =
$$\frac{608F: 01(\text{encoderincrements})}{608F: 02(\text{motorrevolutions})}$$

Feed constant =
$$\frac{6092: 01(\text{Feed})}{6092: 02(\text{Shaftrevolutions})}$$

Position demand value(6062h)×electronic gear ratio=Position demand internal value(60FCh)

Note:

(1) The ratio of electronic gear is valid in the range of 8000 to 1/1000 times.

If the out of range value is saturated within the range, E-883 (abnormal action abnormal protection) occurs.

- (2)608FH-01h (encoder increments) is automatically set according to the resolution of the encoder. The factory value of 6092h-01h (feed) is set according to the resolution of encoder.
- (3) The setting of electronic gear ratio is reflected by the following time sequence.
 - When the power is put into operation
 - When communication is established (ESM status Init \rightarrow OP migration)
 - When the original point is reset
 - Absolute multi-turn zero clearing
- (4) Please note that it does not reflect whether the set value of the associated object changes or not.

The position information initialization when Init \Rightarrow OP in absolute mode, please set the value of absolute encoder position [pulse / unit] / electronic gear ratio within the range of - 2 $^{\circ}$ 31 (- 2147483648) \sim + 2 $^{\circ}$ 31-1 (2147483647). Actions outside this range are not guaranteed.

Please confirm the action range of absolute encoder position and gear ratio.

(5) Try to use the electronic gear ratio setting in Cia402 protocol.

Related parameter

Position encoder resolution(608Fh)

		1 Tesoration(0001 II)	TT */	D	D.		DDO	OB
Index	Sub-index	Name	Units	Range	Data	Access	PDO	OP-
					type			mode
608Fh	-	Position encoder	-	-	-	-	-	-
		resolution						
		The resolution of encoder is	set automat	ically.				
	00h	Highest sub-index	-	2	U8	ro	NO	ALL
		supported						
		Represents the Sub-Indexes	Represents the Sub-Indexes of 608FH.					
	01h	Encoder increments	Pulse	1~4294967295	U32	ro	NO	ALL
		Indicates the amount of encoder movement. Value is set automatically by the encoder						
		resolution.						
	02h	Motor revolutions	r(motor)	1~4294967295	U32	ro	NO	ALL
		Indicates the number of mo	tor rotations	The value is fixed	1 to 1.			

This object defines the encoder resolution for each revolution of the motor.

Position encoder resolution = Encoder increments(608Fh-01h)/ Motor revolutions (608Fh-02h)

This object is automatically set according to the information read out from the motor connected to the servo driver.

Example: connection of 17 bit/r encoder

608Fh-01h(Encoder increments)= 130172

608Fh-02h(Motor revolutions)= 1

Position encoder resolution = 131072 / 1 = 131072

Gear ratio (6091h)

Index	Sub- index	Name	Units	Range	Data type	Access	PDO	OP- mode
6091h	-	Gear ratio	ı	-	1	-	-	-
		Set gear ratio						
	00h	Highest sub-index	-	2	U8	ro	NO	ALL
		supported						
		Represents the Sub-Indexe	es of 6091H.					
	01h	Motor revolutions	Pulse	1~4294967295	U32	rw	NO	ALL
		Motor rotation numbers.						
	02h	Shaft revolutions	r(motor)	1~4294967295	U32	rw	NO	ALL
		Shaft rotation numbers.		·				

This object defines the number of motor revolutions and the number of shaft revolutions after gearbox output. Gear ratio = Motor shaft revolutions(6091h-01h)/ Driving shaft revolutions(6091h-02h).

Feed constant(6092h)

Index	Sub-	Name	Units	Range	Data	Access	PDO	OP-	
	index				type			mode	
		Feed constant	-	-	-	-	-	-	
	-	Set the feed constant.	et the feed constant.						
	00h	Highest sub-index supported	-	2	U8	ro	NO	ALL	
60021		Represents the Sub-Indexes	of 6091H.						
6092h	01h	Feed	Command unit	1~4294967295	U32	rw	NO	ALL	
		Set the feed quantity.							
	02h	Shaft revolutions	r (motor)	1~4294967295	U32	rw	NO	ALL	
	UZN	Set the shaft rotation number.							

This object represents the action amount of shaft each revolution after the gearbox outputs. Feed constant =Feed(6092h-01h)/ Driving shaft revolutions(6092h-02h).

3) Polarity function (607Eh)


For position commands, speed commands, torque commands, and their offsets, polarity (motor rotation direction) can be set. The DS5C2 series sets the rotation direction based on the object Polarity command polarity (607Eh) specified by CoE (CiA402). But the polarity of the Polarity command (607Eh) specified by CoE (CiA402) will change with the change of the rotation direction of parameter P0-05 (rotation direction setting). If P0-05 is set from 0 to 1 and Cia402 object word 607Eh becomes 0xE0, the driver can move in the opposite direction. P0-05 is set from 1 to 0, its object word 607Eh becomes 0, and the drive returns to the default specified positive direction motion.

In addition, the Polarity instruction polarity (607Eh) of the object is not the object of the original replacement parameter P0-05 (rotation direction setting). It is valid when transferring object data corresponding to the table below between the CoE (CiA402) processing unit and the motor control processing unit.

Index	Sub-	Name	Units	Range	Data	Access	PDO	OP-mode
	index				type			
607Eh	00h	Polarity	-	0~255	U8	rw	NO	ALL
		and position offset transferred from th position feedback, processing to the ob-	et the polarity when the values of position instruction, speed instruction, torque instruction and position offset, speed offset (speed addition) and torque offset (torque addition) are ansferred from the object to the internal processing, and the polarity when the values of osition feedback, speed feedback and torque feedback are transferred from the internal processing to the object. Out: for the setting value of this object, please set the polarity of position, speed and torque to					
		Actions under other	settings cann	ot be guarante	ed.			
		Setting value		(Contents			
		0	Symbol	of position, sp	eed and torqu	e has no reve	rsal	
		224	Symbol	l of position, s	peed and toro	que has revers	sal	
		Others		Cannot su	pport (do not	set)		

bit7: position polarity 0: symbol no reversal 1: symbol has reversal bit6: speed polarity 0: symbol no reversal 1: symbol has reversal bit5:torque polarity 0: symbol no reversal 1: symbol has reversal bit4-0: Reserved, please set to 0 object < command · setting> · 607Ah (Target position) · 60B0h (Position offset) · 60FFh (Target velocity) · 60B1h (Velocity offset) · 6071h (Target torque) • 60B2h (Torque offset) • 6062h(Position demand value) <monitor> • 6064h(Position actual value) • 606Bh(Velocity demand value) • 606Ch(Velocity actual value) • 6074h(Torque demand) • 6077h(Torque actual value) • 6078h(Current actual value)

Symbol no reversal: for the positive direction command, the motor rotation reverse direction is CCW direction; Symbol has reversal: for the positive direction command, the motor rotation reverse direction is CW direction. When the rotation direction of the motor is viewed from the shaft end of the load side, CW is defined as clockwise and CCW is defined as anticlockwise.

4) Initialization of absolute encoder

If the absolute encoder is used in the position control mode, the zero point reset action is not required (except for the case that the absolute encoder is used as an incremental encoder). After the installation of the battery, it is necessary to clear the data of multiple turns at the initial start-up of the device.

(1) Absolute data

Among the data read out from the absolute encoder, there are the built-in single turn data within one turn of the motor and the multi-turn data which are counted once per revolution. Among them, multi-turn data needs to be backed up by batteries because it is an electrical count. Both data are increased when rotating from the CCW direction of the motor shaft end. E-228 alarm (absolute counter overflow protection) occurs when the multi-turn data overflows.

(2) Absolute data to 32-bit data mapping

The servo drive initializes the position information. If it is a 23-bit encoder, the single turn data is 23 bits and the multi turn data is 16 bits. The synthesized position information is 39 bits width, but as position information, the value set to the object is 32 bits width. Because 6063h only sets the lower 32 bits of absolute encoder data as position information, the effective bit length of multi turn data becomes 9 bits (the upper 7 bits of 16 bits disappear). 6064h calculates the position information based on the following equation, and the calculated position information becomes a 32-bit width. Therefore, the effective bit length of multi turn data varies according to the inverse transformation value of the electronic gear.

607Eh (Polarity)	Position information (take an example of 19-bit encoder motor)
607Eh = 0 (CCW is the forward	6063h=M*2^19 +S
direction)	6064h= (6063h* inverse transformation value of the electronic gear)
$607Eh = 224$ (CW is the forward $6063h = -(M*2^19 + S)$	
direction)	6064h=(6063h* inverse transformation value of the electronic gear)

M:multi-turn data S: single turn data

5) Position range limit (607Bh)

The DS5C2 series servo driver does not support wrap-around.

Infinite rotation mode acts as 607Bh-01h=80000000h, 607Bh-02h=7FFFFFFh in the interior. Modifying this object is not affected either.

7) Homing offset(607Ch)

Set the offset quantity of the mechanical origin offset after returning to the mechanical origin, and use this position as the mechanical zero point. If it is set to 0, the mechanical origin will coincide with the mechanical zero point. The origin offset can be set as a positive or negative number to indicate the left or right deviation from the mechanical origin.

This object can be updated at any time, but it needs to reflect the actual location information through the following time sequence.

- · When the power is put into operation
- When communication is established (when ESM status is Init \rightarrow OP migration)
- · When the original point is reset

The position under the above time sequence is used as the reference to initialize(preset) the following objects

· When the origin position is detected

6063h(Position actual internal value)=60FCh(Position demand internal value)=0 6062h(Position demand value)=6064h(Position actual value)=607Ch(Home offset)

 \cdot Initialization (preset) in time sequence other than the origin position is detected

6063h(Position actual internal value)=60FCh(Position demand internal value)

6062h(Position demand value)=6064h(Position actual value)

=6063h(Position actual internal value)+607Ch(Home offset)

Note: the above is the case when the electronic gear ratio is 1:1 and there is no polarity reversal.

Home offset definition

Home position: Index pulse position (origin position)

Zero position: Incremental system=0 (The position when the power is on, or the position from hm detected index pulse substract by Home offset position)

Absolute system=Zero position of absolute encoder.

7.9.7 Overtravel function in Ethercat mode

Parameter	Meaning	Default value	Unit	Range	Modify	Effective
P0-28.0	0: Direct alarm, using servo deceleration shutdown method 1: Alarm after decelerating and stopping as 605Ah mode 2: Do not use overtravel	2	-	0~3	0	1 3 4 8 9 10

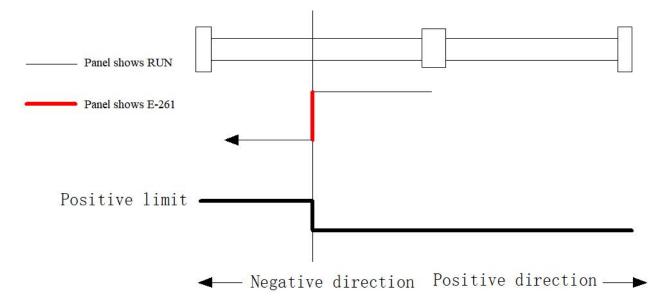
Prohibited status

Scenario 1:

When the servo is in an enabled not motion or disabled state and touches the reverse limit switch, the panel will display NOT, cancel the reverse limit signal, and the panel will return to its previous state.

Scenario 2:

When the servo is in an enabled not motion or disabled state and touches the forward limit switch, the panel will display POT, cancel the forward limit signal, and the panel will return to its previous state.

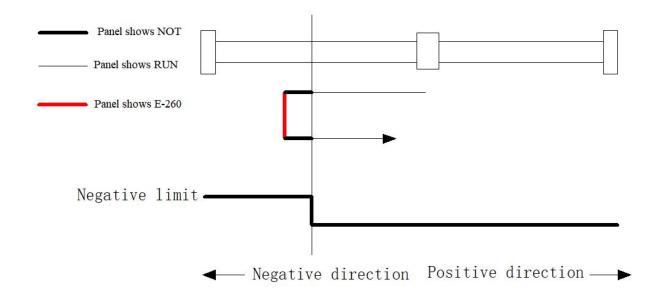

Scenario 3:

When the servo is in an enabled not motion or disabled state and simultaneously touches the forward and reverse limit switches, the servo will report E-261. If two limit signals are cancelled, the panel will return to its previous state; If any limit signal is cancelled, the panel will display another limit signal, which needs to be cancelled before the panel can return to its previous state.

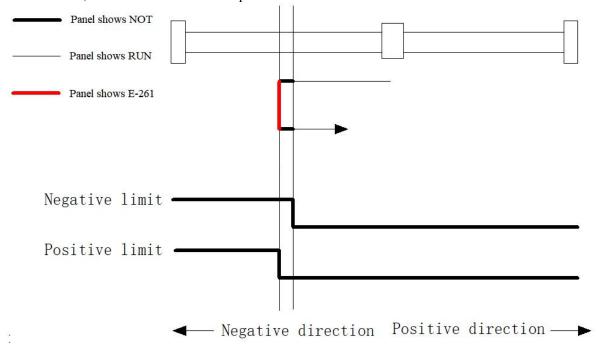
■ Normaly operation status

(1) Initial movement direction to the left

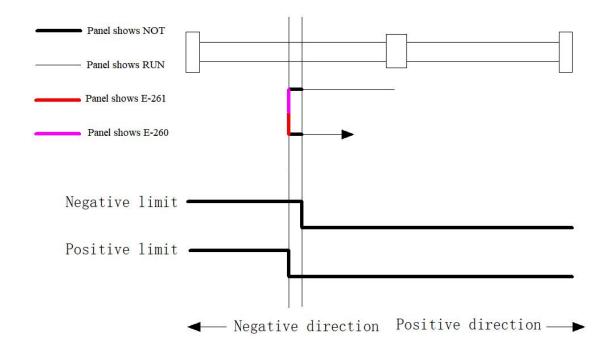
The initial direction of movement is left. When touching the forward limit switch, the servo will report E-261. If the forward limit switch is cancelled first, and then the alarm is cleared, the shaft will return to a non enabled state, and both the forward and reverse directions of the shaft can move; If the alarm is cleared first and the axis returns to the disabled state, but the panel still displays POT, the axis is still in the forward limit restricted state. The forward limit signal needs to be cancelled in order to release the forward overtravel prohibition.

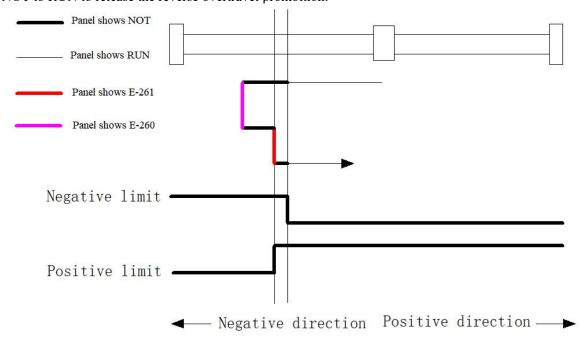


Overtravel status

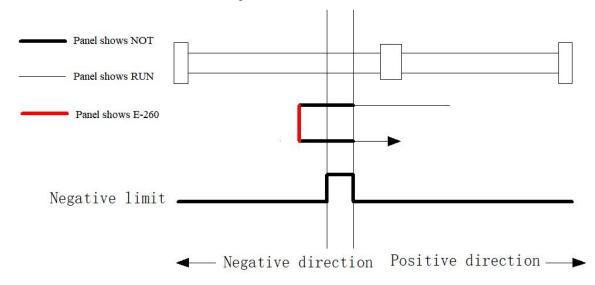

P0-28 set to 1 (Alarm deceleration stop)

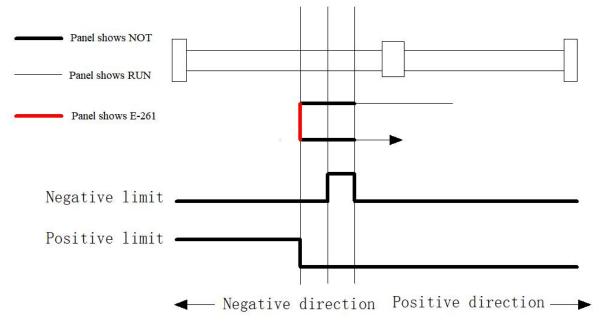
(1) Initial movement direction to the left, triggering the overtravel signal without occurrence of offside Scenario 1: Failure to touch the forward limit switch


The initial direction of movement is left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. The shaft stops on the reverse limit switch, and the servo will report E-260. The alarm must be cleared to move the axis in the forward direction. When it touches the falling edge of the reverse limit switch, the panel display can change from NOT to RUN, and the reverse overtravel prohibition can be released.


Scenario 2: Before the axis deceleration stops, touch the forward limit switch. The initial direction of movement is left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. Before the shaft stops, if the forward limit switch is touched, the servo will report E-261. The forward limit switch must be cancelled in order to clear the E-261 alarm. Otherwise, the alarm cannot be cleared. Then, the shaft moves forward and touches the falling edge of the reverse limit switch. Only then can the panel display change from NOT to RUN, and the reverse overtravel prohibition be released.

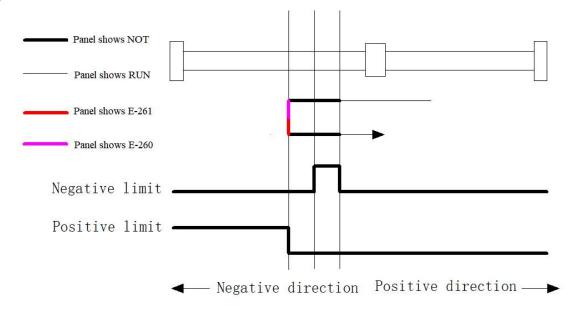
Scenario 3: When the shaft stops at the negative limit switch and touches the positive limit switch. The initial direction of movement is left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. When the shaft stops on the reverse limit switch, the servo will report E-260. At this time, if the forward limit switch is touched, the servo will report E-261. The forward limit switch must be cancelled before the E-261 alarm can be cleared. Otherwise, the alarm cannot be cleared. Then, when the shaft moves forward and touches the falling edge of the reverse limit switch, the panel display can change from NOT to RUN, and the reverse overtravel prohibition can be released.


Scenario 4: When touching the forward limit switch during axis forward movement The initial direction of movement is left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. When the shaft stops on the reverse limit switch, the servo will report E-260. After clearing the alarm to make the shaft move forward, if the forward limit switch is touched, the servo will report E-261. The forward limit switch must be cancelled before the E-261 alarm can be cleared. Otherwise, the alarm cannot be cleared. Continue to move the shaft forward, touch the falling edge of the reverse limit switch, and the panel display can change from NOT to RUN to release the reverse overtravel prohibition.

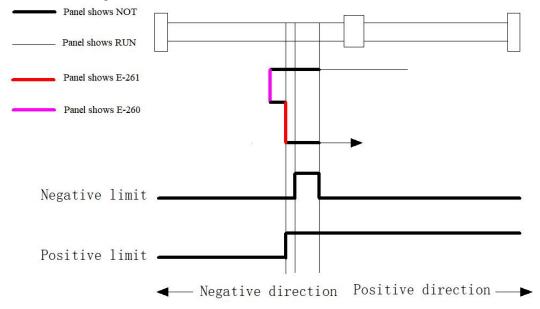

(2) The initial movement direction is to the left, triggering an overtravel signal and out of range occured Scenario 1: Without touching the forward limit switch while offside

The initial direction of movement is to the left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. However, the axis crosses the reverse limit switch and triggers the falling edge of the reverse limit switch. The axis stops outside the limit, and the servo will report E-260. The alarm must be cleared to make the axis move forward. Touch the rising and falling edges of the reverse limit switch again before the panel display can change from

NOT to RUN, and the reverse overtravel prohibition can be released.



Scenario 2: In the case of offside, touch the forward limit switch before the axis deceleration stop is completed The initial direction of movement is left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. However, the axis crosses the reverse limit switch and triggers the falling edge of the reverse limit switch. Before the shaft stops, if the forward limit switch is touched, the servo will report E-261. The forward limit switch must be cancelled in order to clear the E-261 alarm. Otherwise, the alarm cannot be cleared. Then, the shaft moves forward and touches the rising and falling edges of the reverse limit switch again. Only then can the panel display change from NOT to RUN, and the reverse overtravel prohibition be released.



Scenario 3: In the case of offside, when the shaft stops, touch the forward limit switch The initial direction of movement is left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. However, the axis crosses the reverse limit switch and triggers the falling edge of the reverse limit switch. When the shaft stops, the servo will report E-260. At this time, if the forward limit switch is touched, the servo will report E-261. The forward limit switch must be cancelled before the E-261 alarm can be cleared. Otherwise, the alarm cannot be cleared. Then, the shaft will move forward and touch the rising and falling edges of the reverse limit switch again. Only then can the panel display change from NOT to RUN, and the reverse overtravel

prohibition be released.

Scenario 4: In the case of offside, touching the forward limit switch during axis forward movement The initial direction of movement is left. When touching the rising edge of the reverse limit switch, the panel display changes from RUN to NOT, triggering the reverse overtravel deceleration stop. However, the axis crosses the reverse limit switch and triggers the falling edge of the reverse limit switch. When the shaft stops, the servo will report E-260. After clearing the alarm to move the shaft forward, if the forward limit switch is touched, the servo will report E-261. The forward limit switch must be cancelled before the E-261 alarm can be cleared. Otherwise, the alarm cannot be cleared. Continue to move the shaft forward, touch the rising and falling edges of the reverse limit switch again, and the panel display can change from NOT to RUN to release the reverse overtravel prohibition.

7.9.8 Remote I/O function

■ General related parameters

Parameter	Meaning	Default	Setting
P5-72	Remote SI input 1	0	0: Invalid 1: Input positive signal from SI1 2: Input positive signal from SI2 3: Input positive signal from SI3 16: Always set as valid

Parameter	Meaning	Default	Setting
			17: Input reverse signal from SI1
			18: Input reverse signal from SI2
			19: Input reverse signal from SI3
			0: Invalid
			1: Input positive signal from SI1
			2: Input positive signal from SI2
D5 72	Damata Climant 2	0	3: Input positive signal from SI3
P5-73	Remote SI input 2	U	16: Always set as valid
			17: Input reverse signal from SI1
			18: Input reverse signal from SI2
			19: Input reverse signal from SI3
			0: Invalid
			1: Input positive signal from SI1
			2: Input positive signal from SI2
D5 74	D GI	0	3: Input positive signal from SI3
P5-74	Remote SI input 3	0	16: Always set as valid
			17: Input reverse signal from SI1
			18: Input reverse signal from SI2
			19: Input reverse signal from SI3
			0: Do not output to terminals
			1: Output positive signal from SO1
	D		2: Output positive signal from SO2
P5-76	Remote SO	0	3: Output positive signal from SO3
	output 1	-	17: Output reverse signal from SO1
			18: Output reverse signal from SO2
			19: Output reverse signal from SO3
			0: Do not output to terminals
			1: Output positive signal from SO1
	D		2: Output positive signal from SO2
P5-77	Remote SO	0	3: Output positive signal from SO3
	output 2	, , ,	17: Output reverse signal from SO1
			18: Output reverse signal from SO2
			19: Output reverse signal from SO3
			0: Do not output to terminals
			1: Output positive signal from SO1
			2: Output positive signal from SO2
P5-78	Remote SO	0	3: Output positive signal from SO3
	output 3	, , , , , , , , , , , , , , , , , , ,	17: Output reverse signal from SO1
			18: Output reverse signal from SO2
			19: Output reverse signal from SO3
			17. Garpar Teverse Signar Hom 503

■ Remote I/O related dictionary objects

Object	Meaning	Unit	Explanation
60FDh	Digital inputs	-	Bit0: N-OT signal Bit1: P-OT signal Bit2: SPDD signal Bit3: Probe 1 signal Bit4: Probe 2 signal Bit5: Z-phase signal output Bit6~Bit15 reserved Bit16: Remote SI input 1 Bit17: Remote SI Input 2 Bit18: Remote SI input 3
60FEh:01	Physical outputs	-	Bit0~Bit15 reserved Bit16: Remote SO output 1 Bit17: Remote SO output 2 Bit18: Remote SO output 3
60Feh:02	Bit mask	-	When using, Bit16~Bit18 should correspond to position 1

For specific information on 60FDh, please refer to Chapter 7.9.4 Digital Input (60FDh) For specific information on 60FEh, please refer to Chapter 7.9.5 Digital Output (60FEh)

7.9.9 Cascade alarm function

3770 and later versions have added an external terminal emergency alarm function. When this function is enabled, if the terminal signal is conductive, the driver will generate an alarm E-320. The driver can be used in cascade, and by connecting the alarm output to this functional terminal of the next driver, a cascade alarm can be triggered.

New function parameter P5-68, default setting of P5-68 to 0:

Parameter	Meaning	Default value	Unit	Range	Modify	Effective
P5-68	Terminal emergency alarm function	0	-	00~ff	Anytime	At once

8 Object dictionary

This chapter mainly introduces the object dictionary area allocation, COE communication area, driver profile area and so on.

8.1 Object dictionary area assignment

All objects are configured in the object dictionary of each group through 4 digits 16-bit index configuration address.

The object dictionary of CoE (CANopen over EtherCAT) specified by CiA402 and the object dictionary of DS5C2 series are as follows:

Object dict	ionary specified by CiA402	DS5C2 series object dictionary		
Index	Content	Index	Content	
0000h∼0FFFh	Data type area	0000h∼0FFFh	Data type area	
1000h∼1FFFh	COE communication area	1000h∼1FFFh	COE communication area	
2000h~5FFFh		2000h~2FFFh	Servo parameter area	
	Factory exetors area	3000h∼3FFFh	Reserved	
	Factory custom area	4000h∼4FFFh	Reserved	
		5000h∼5FFFh	Reserved	
6000h∼9FFFh	Profile area	6000h∼6FFFh	Driver Profile area	
	Frome area	7000h∼9FFFh	Reserved	
A000h∼FFFFh	Reserved	A000h∼FFFFh	Reserved	

8.2 COE communication area (0x1000-0x1FFF)

8.2.1 Object list

1) Device information object:

Index	Sub-index	Name	
1000h	00h	Device type	
1001h	00h	Error register	
1008h	00h	Manufacturer device name	
1009h	00h	Manufacturer hardware version	
100Ah	00h	Manufacturer software version	
	-	Identity object	
	00h	Number of entries	
1018h	01h	Vendor ID	
101811	02h	Product code	
	03h	Revision number	
	04h	Serial number	

2) RxPDO object mapping

Index	Sub-index	Name
	-	Receive PDO mapping 1
	00h	Number of entries
	01h	1st receive PDO mapped
	02h	2nd receive PDO mapped
1600h	03h	3rd receive PDO mapped
	04h	4th receive PDO mapped
	05h	5th receive PDO mapped
	18h	24th receive PDO mapped
	-	Receive PDO mapping 2
1601h	00h	Number of entries
	01h	1st receive PDO mapped

Index	Sub-index	Name		
	02h	2nd receive PDO mapped		
	03h	3rd receive PDO mapped		
	04h	4th receive PDO mapped		
	05h	5th receive PDO mapped		
	18h	24th receive PDO mapped		
	-	Receive PDO mapping 3		
	00h	Number of entries		
	01h	1st receive PDO mapped		
	02h	2nd receive PDO mapped		
1602h	03h	3rd receive PDO mapped		
	04h	4th receive PDO mapped		
	05h	5th receive PDO mapped		
	•••			
	18h	24th receive PDO mapped		
	-	Receive PDO mapping 4		
	00h	Number of entries		
	01h	1st receive PDO mapped		
	02h	2nd receive PDO mapped		
1603h	03h	3rd receive PDO mapped		
	04h	4th receive PDO mapped		
	05h	5th receive PDO mapped		
	•••			
	18h	24th receive PDO mapped		

3) TxPDO object mapping:

Index	Sub-index	Name
	-	Transmit PDO mapping 1
	00h	Number of entries
	01h	1st transmit PDO mapped
	02h	2nd transmit PDO mapped
1A00h	03h	3rd transmit PDO mapped
	04h	4th transmit PDO mapped
	05h	5th transmit PDO mapped
	18h	24th transmit PDO mapped
	-	Transmit PDO mapping 2
	00h	Number of entries
	01h	1st transmit PDO mapped
	02h	2nd transmit PDO mapped
1A01h	03h	3rd transmit PDO mapped
	04h	4th transmit PDO mapped
	05h	5th transmit PDO mapped
	18h	24th transmit PDO mapped
	-	Transmit PDO mapping 3
	00h	Number of entries
	01h	1st transmit PDO mapped
	02h	2nd transmit PDO mapped
1A02h	03h	3rd transmit PDO mapped
	04h	4th transmit PDO mapped
	05h	5th transmit PDO mapped
	18h	24th transmit PDO mapped
	-	Transmit PDO mapping 4
1A03h	00h	Number of entries
	01h	1st transmit PDO mapped

Index	Sub-index	Name
	02h	2nd transmit PDO mapped
	03h	3rd transmit PDO mapped
	04h	4th transmit PDO mapped
	05h	5th transmit PDO mapped
	18h	24th transmit PDO mapped

4) PDO object distribution:

Index	Sub-Index	Name
	-	Sync manager channel 2
	00h	Number of assigned PDOs
1C12h	01h	Assigned RxPDO 1
101211	02h	Assigned RxPDO 2
	03h	Assigned RxPDO 3
	04h	Assigned RxPDO 4
Index	Sub-Index	Name
	-	Sync manager channel 3
	00h	Number of assigned PDOs
1C13h	01h	Assigned TxPDO 1
101311	02h	Assigned TxPDO 2
	03h	Assigned TxPDO 3
	04h	Assigned TxPDO 4

5) PDO synchronous management channel

Index	Sub-Index	Name
	-	Sync manager 2 synchronization
	00h	Number of sub-objects
	01h	Sync mode
	02h	Cycle time
	03h	Shift time
	04h	Sync modes supported
	05h	Minimum cycle time
1C32h	06h	Calc and copy time
103211	08h	Command (not support)
	09h	Delay time (not support)
	0Ah	Sync0 cycle time
	0Bh	Cycle time too small (not support)
	0Ch	SM-event missed (not support)
	0Dh	Shift time too short (not support)
	0Eh	RxPDO toggle failed (not support)
	20h	Sync error
	-	Sync manager 3 synchronization
	00h	Number of sub-objects
	01h	Sync mode
	02h	Cycle time
	03h	Shift time
	04h	Sync modes supported
	05h	Minimum cycle time
1C33h	06h	Calc and copy time
103311	08h	Command (not support)
	09h	Delay time (not support)
	0Ah	Sync0 cycle time
	0Bh	Cycle time too small (not support)
	0Ch	SM-event missed (not support)
	0Dh	Shift time too short (not support)
	0Eh	RxPDO toggle failed (not support)
	20h	Sync error

8.2.2 Device information

This section describes the equipment information.

1000h	Index	Sub-index	Name	/Description		Range	•	DateTyp	e Acce	ess	PDO	Op-mode
Displays the type (status) of alarm that is occurring in the servo drive. Displays the type (status) of alarm that is occurring in the servo drive. When the alarm does not occur, it will display 0000H. Do not display warnings. Bit	1000h	00h	Di	vece type		0~429496	7295	U32	ro		NO	All
Displays the type (status) of alarm that is occurring in the servo drive. When the alarm does not occur, it will display 0000H. Do not display warnings. Bit			Indicates th	e device type	e. In ca	se of servo d	łriver,	the value	is fixed t	to 040	020192h.	
When the alarm does not occur, it will display 0000H. Do not display warnings. Bit	1001h	00h				<u> </u>					TxPDO	All
Bit			1 2	• 1	/			_	servo driv	e.		
Bit Contents 0 Not support 1 2 3 4 AL status code defined alarm occured*1 5 Not support 6 Reserved 7 AL status code undefined alarm occured*2 *1: "AL status code defined alarm" refers to abnormal communication association EtherCAT E-800~7, E-810~7, E-850~7.						, it will disp	lay 00	00H.				
Not support 1 2 3 3 4 AL status code defined alarm occured*1 5 Not support 6 Reserved 7 AL status code undefined alarm occured*2 *1: "AL status code defined alarm" refers to abnormal communication association EtherCAT E-800~7, E-810~7, E-850~7.			Do not disp	lay warnings								
Not support 1 2 3 3 4 AL status code defined alarm occured*1 5 Not support 6 Reserved 7 AL status code undefined alarm occured*2 *1: "AL status code defined alarm" refers to abnormal communication association EtherCAT E-800~7, E-810~7, E-850~7.						~						
1												
AL status code defined alarm occured*1 5 Not support			_			Not suppo	ort					
3 4 AL status code defined alarm occured*1 5 Not support												
AL status code defined alarm occured*1 5 Not support												
S				A.T. or	totus or	ada dafinad	010 ****		1			
6 Reserved 7 AL status code undefined alarm occured*2 *1: "AL status code defined alarm" refers to abnormal communication association EtherCAT E-800~7, E-810~7, E-850~7. *2: "AL status code undefined alarm" refers to abnormal communication association EtherCAT E-880~7 and abnormal except EtherCAT communication association. 1008h 00h Manufacturer Device name - ro TxPDO All Represents the device name. - ro TxPDO All Represents the hardware - ro TxPDO All Namufacturer Hardware version - ro TxPDO All Name/Description Range DateType Access PDO Op-moded 1018h 00h Number of entries 0~255 U8 ro TxPDO All Represents the object subindexes. The value is fixed to 04H. 01h vendor ID 0~4294967295 U32 ro TxPDO All Indicates the manufacturer ID of EtherCAT. The value is fixed to 00000556h. 02h product code 0~4294967295 U32 ro TxPDO All Represents the product code. The value is 10305070h. 03h Revision umber 0~4294967295 U32 ro TxPDO All Indicates the product version number. The value is 02040608h.				AL S	tatus co			occureu.	1			
Table Tabl			l									
*1: "AL status code defined alarm" refers to abnormal communication association EtherCAT E-800~7, E-810~7, E-850~7. *2: "AL status code undefined alarm" refers to abnormal communication association EtherCAT E-880~7 and abnormal except EtherCAT communication association. 1008h 00h			7									
EtherCAT E-800~7, E-810~7, E-850~7. *2: "AL status code undefined alarm" refers to abnormal communication association			*1· "AI. st									
*2: "AL status code undefined alarm" refers to abnormal communication association EtherCAT E-880~7 and abnormal except EtherCAT communication association. 1008h 00h												
EtherCAT E-880~7 and abnormal except EtherCAT communication association.												
Represents the device name. 1009h 00h Manufacturer Hardware - - ro TxPDO All version Indicates the hardware version. Index Sub-index Name/Description Range DateType Access PDO Op-mode 1018h 00h Number of entries 0~255 U8 ro TxPDO All Represents the object subindexes. The value is fixed to 04H. 01h vendor ID 0~4294967295 U32 ro TxPDO All Indicates the manufacturer ID of EtherCAT. The value is fixed to 00000556h. 02h product code 0~4294967295 U32 ro TxPDO All Represents the product code. The value is 10305070h. 03h Revision umber 0~4294967295 U32 ro TxPDO All Indicates the product version number. The value is 02040608h.												
Tarpo All Indicates the hardware version Indicates the hardware version Indicates the hardware version.	1008h	00h	Manufactı	ırer Device n	ame	_		-	ro	,	TxPDO	All
Version Indicates the hardware version. Index Sub-index Name/Description Range DateType Access PDO Op-moded Op			Represents	the device na	ıme.							
Index Sub-index Name/Description Range DateType Access PDO Op-mode 1018h 00h Number of entries 0~255 U8 ro TxPDO All Represents the object subindexes. The value is fixed to 04H. 101h vendor ID 0~4294967295 U32 ro TxPDO All Indicates the manufacturer ID of EtherCAT. The value is fixed to 00000556h. 102h product code 0~4294967295 U32 ro TxPDO All Represents the product code. The value is 10305070h. 103h Revision umber 0~4294967295 U32 ro TxPDO All Indicates the product version number. The value is 02040608h.	1009h	00h			are	-		-	ro	'	TxPDO	All
IndexSub-indexName/DescriptionRangeDateTypeAccessPDOOp-mode1018h00hNumber of entries0~255U8roTxPDOAllRepresents the object subindexes. The value is fixed to 04H.01hvendor ID0~4294967295U32roTxPDOAllIndicates the manufacturer ID of EtherCAT. The value is fixed to 00000556h.02hproduct code0~4294967295U32roTxPDOAllRepresents the product code. The value is 10305070h.03hRevision umber0~4294967295U32roTxPDOAllIndicates the product version number. The value is 02040608h.												
1018h 00h Number of entries 0~255 U8 ro TxPDO All Represents the object subindexes. The value is fixed to 04H. 101h vendor ID 0~4294967295 U32 ro TxPDO All Indicates the manufacturer ID of EtherCAT. The value is fixed to 00000556h. 102h product code 0~4294967295 U32 ro TxPDO All Represents the product code. The value is 10305070h. 103h Revision umber 0~4294967295 U32 ro TxPDO All Indicates the product version number. The value is 02040608h.					1							
Represents the object subindexes. The value is fixed to 04H. 01h vendor ID 0~4294967295 U32 ro TxPDO All Indicates the manufacturer ID of EtherCAT. The value is fixed to 00000556h. 02h product code 0~4294967295 U32 ro TxPDO All Represents the product code. The value is 10305070h. 03h Revision umber 0~4294967295 U32 ro TxPDO All Indicates the product version number. The value is 02040608h.	Index	Sub-index	Name/De	escription		Range	Dat	eType	Access	PI	00	Op-mode
01hvendor ID0~4294967295U32roTxPDOAllIndicates the manufacturer ID of EtherCAT. The value is fixed to 00000556h.02hproduct code0~4294967295U32roTxPDOAllRepresents the product code. The value is 10305070h.03hRevision umber0~4294967295U32roTxPDOAllIndicates the product version number. The value is 02040608h.	1018h	00h	Number	of entries		0~255	-	U8	ro	TxF	PDO	All
Indicates the manufacturer ID of EtherCAT. The value is fixed to 00000556h. O2h					bindex	es. The valu	e is fix	xed to 04I	Н.			
02hproduct code0~4294967295U32roTxPDOAllRepresents the product code. The value is 10305070h.03hRevision umber0~4294967295U32roTxPDOAllIndicates the product version number. The value is 02040608h.		01h										All
Represents the product code. The value is 10305070h. 03h Revision umber 0~4294967295 U32 ro TxPDO All Indicates the product version number. The value is 02040608h.												
03h Revision umber 0~4294967295 U32 ro TxPDO All Indicates the product version number. The value is 02040608h.		02h							ro	TxF	PDO	All
Indicates the product version number. The value is 02040608h.												
•		03h								TxF	PDO	All
									08h.	1_		
		04h										
Indicates the product serial number. The value is 00000000h.			Indicates th	e product ser	ial nun	nber. The va	lue is	00000000)h.			

8.2.3 Sync manager communication type(1C00h)

The action mode assigned to each SyncManager is set by 1C00h object.

The value is fixed for the servo driver.

Index	Sub-index	Name/Description	Range	DateType	Access	PDO	Op-mode
1C00h	00h	Number of used sync manager	0~255	U8	ro	TxPDO	All
		channels					
		Represents the object subindexes. The	value is fix	xed to 04H.			
	01h	Communication type sync manager 0 0~4 U8 ro TxPDO All				All	
		Set the purpose of SYNC Manager 0.					
		0: unused	0: unused				
		1: Mailbox receive message (master sta	1: Mailbox receive message (master station→slave station)				
		2: Mailbox send message (slave station→master station)					
		3: RxPDO (master station→slave station)					
		4: TxPDO (slave station→master statio	4: TxPDO (slave station→master station)				
		Because SYNC Manager0 uses mailbox	x to receiv	e messages,	the value	is fixed to	1.

021	C	0.4	110		TDDO	A 11		
02h	Communication type sync manager 1	0~4	U8	ro	TxPDO	All		
	Set the purpose of SYNC Manager 1.							
	0: unused							
	1: Mailbox receive message (master station→slave station)							
	2: Mailbox send message (slave station→master station)							
3: RxPDO (master station→slave station)								
	4: TxPDO (slave station→master station)							
	fixed to 2.							
03h	Communication type sync manager 2	0~4	U8	ro	TxPDO	All		
	Set the purpose of SYNC Manager 2.							
	0: unused							
	1: Mailbox receive message (master station→slave station)							
	2: Mailbox send message (slave station→master station)							
	3: RxPDO (master station→slave station)							
	4: TxPDO (slave station→master station)							
	Because SYNC Manager2 uses Process data output (RxPDO), the value is fixed to 3.							
04h	Communication type sync manager 3	0~4	U8	ro	TxPDO	All		
	Set the purpose of SYNC Manager 3.							
	0: unused							
	1: Mailbox receive message (master station→slave station)							
	2: Mailbox send message (slave station→master station)							
	3: RxPDO (master station→slave station)							
	4: TxPDO (slave station→master station)							
Because SYNC Manager3 uses Process data output (RxPDO), the value is fixed						4		
	Decause 5 1 Ne Managers uses 1 10cess u	aia ouip	ut (IXXI DO)	, aic valu	c is linea to	т.		

8.2.4 PDO mapping

1. PDO distribution object (1C12h ~ 1C13h)

The table for PDO mapping allocated by the syncmanager is set by the objects 1C12h to 1C13h.

Index	Sub-index	Name/Description	Range	DateType	Access	PDO	Op-mode	
1C12h	00h	Number of assigned PDOs	0~4	U8	rw	NO	All	
		Represents the subindexes for	r this object.					
	01h	Assigned RxPDO 1	1600h~1603h	U16	rw	NO	All	
		Specifies the RxPDO mappin	g object.					
	02h	Assigned RxPDO 2	1600h~1603h	U16	rw	NO	All	
		Specifies the RxPDO mappin						
	03h	Assigned RxPDO 3	1600h~1603h	U16	rw	NO	All	
		Specifies the RxPDO mapping object.						
	04h	Assigned RxPDO 4	1600~1603	U16	rw	NO	All	
		Specifies the RxPDO mappin	Specifies the RxPDO mapping object.					
1C13h	00h	Number of assigned PDOs	0~4	U8	rw	NO	All	
		Represents the object subinde	exes. The value is	fixed to 04H.				
	01h	Assigned TxPDO 1	1A00h~1A03h	U16	rw	NO	All	
		Specifies the TxPDO mappin	g object.					
	02h	Assigned TxPDO 2	1A00h~1A03h	U16	rw	NO	All	
		Specifies the TxPDO mapping object.						
	03h	Assigned TxPDO 3	1A00h~1A03h	U16	rw	NO	All	
		Specifies the TxPDO mapping object.						
	04h	Assigned TxPDO 4	1A00h~1A03h	U16	rw	NO	All	
		Specifies the TxPDO mappin	g object.					

Sub-index 01h-04h of 1C12h and 1C13h can only be changed when the ESM state is PreOP and sub-index 00h = 0. Other status will return port code (06010003h).

After the settings changed, set the Sub-index number of Sub-index 00h. PDO allocation object settings are reflected by changing ESM status to SafeOP.

2.PDO mapping object (1600h~1603h, 1A00h~1A03h)

As a table for PDO mapping objects, 1600h-1603h for RxPDO and 1A00h-1A03h for TxPDO can be used. After subindex 01h, it represents the information of the mapped application layer object.

Index	Sub-Index	Name	e/Description	Range	DateType	Access	PDO	Op-mode
1600h	00h	Numl	per of entries	0~4294967295	U8	rw	NO	All
		Represents	epresents the subindexes for this object.					
	01h	1st receiv	ve PDO mapped	0~4294967295	U32	rw	NO	All
		Set the firs	Set the first mapping object.					
		bit	3116	158	7	0		
		Index number Sub-index number Bit length				ngth		
	02h		ve PDO mapped	0~4294967295	U32	rw	NO	All
		The setting	g method is same to	Subindex01h.				
	03h	3rd recei	ve PDO mapped	0~4294967295	U32	rw	NO	All
		The setting	ne setting method is same to Subindex01h.					
	04h	4th recei	ve PDO mapped	0~4294967295	U32	rw	NO	All
		The setting	The setting method is same to Subindex01h.					
	05h		5th receive PDO mapped 0~4294967295 U32 rw			NO	All	
			g method is same to	Subindex01h.				
	06h		ve PDO mapped	0~4294967295	U32	rw	NO	All
		The setting	g method is same to	Subindex01h.				
	16h		ive PDO mapped	0~4294967295	U32	rw	NO	All
		The setting method is same to Sub-index01h.						
1601h	-	Receive PDO mapping 2, Sub-index specification is same to 1600h.						
1602h	-		Receive PDO mapping 3, Sub-index specification is same to 1600h.					
1603h	-	Receive Pl	DO mapping 4, Sub	o-index specificatio	n is same to	600h.		

Do not map duplicate objects. The change of repeated setting is not guaranteed.

Sub-index 01h-18h of 1600h-1603h can only be changed when the ESM state is PreOP and Sub-index 00h = 0. Other status will return Abort Code (06010003h).

After the settings changed, set the Sub-index number of Sub-index 00h. PDO allocation object settings are reflected by changing ESM status to SafeOP.

Index	Sub-Index	Nam	e/Description	Range	DateType	Access	PDO	Op-mode
1A00h	00h	Num	ber of entries	0~4294967295	U8	rw	NO	All
		Represent	s the subindexes for	this object.				
	01h	1st trans	mit PDO mapped	0~4294967295	U32	rw	NO	All
		Set the fire	st mapping object.					
		bit	3116	158	7	. 0		
			Index number	Sub-index number	r Bit le	ngth		
	02h	2nd trans	2nd transmit PDO mapped 0~4294967295 U32 rw					All
		The settin	g method is same to	Subindex01h.				
	03h	3rd trans	mit PDO mapped	U32	rw	NO	All	
		The settin	he setting method is same to Subindex01h.					
	04h	4th trans	mit PDO mapped	0~4294967295	U32	rw	NO	All
		The settin	The setting method is same to Subindex01h.					
	05h	5th trans	mit PDO mapped	0~4294967295	U32	rw	NO	All
		The settin	g method is same to	Subindex01h.				
	06h	6th trans	mit PDO mapped	0~4294967295	U32	rw	NO	All
		The settin	g method is same to	Subindex01h.				
	•••							
	16h	16th transmit PDO mapped 0~4294967295 U32 rw NO						All
		The setting method is same to Subindex01h.						
1A01h	-	Transmit PDO mapping 2, Subindex specification is same to 1600h.						
1A02h	-	Transmit PDO mapping 3, Subindex specification is same to 1600h.						
1A03h	-	Transmit 1	PDO mapping 4, Su	bindex specification	n is same to	1600h.		

Do not map duplicate objects. The change of repeated setting is not guaranteed.

Subindex 01h-18h of 1A00h-1A03h can only be changed when the ESM state is PreOP and Subindex00h = 0. Other status will return Abort Code (06010003h).

After the settings changed, set the Subindex number of Subindex00h. PDO allocation object settings are reflected by changing ESM status to SafeOP.

8.2.5 Sync manager 2/3 synchronization (1C32h, 1C33h)

Sync manager2 setting is executed according to 1C32h (Sync manager 2 synchronization). Sync manager3 setting is executed according to 1C33h (Sync manager 3 synchronization).

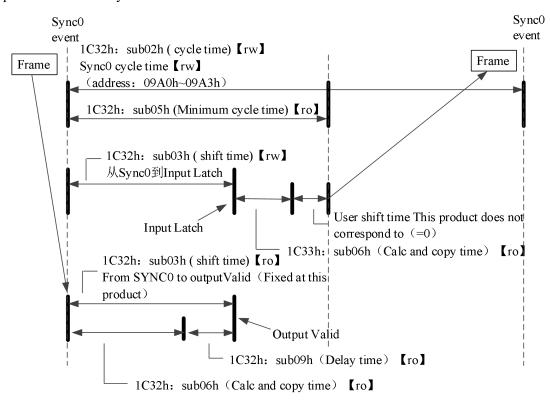
Sync manager 2 synchronization(1C32h)

Index	Sub-Index	Name / Description	Range	DateType	Access	PDO	Op-mode				
1C32	00h	Number of entries	0~20h	U8	ro	NO	All				
1032	OOH	Represents the number of				1	7 111				
	01h	Sync mode	0-65535	U16	rw	NO	All				
	0111			010	1 **	110	2 111				
		Set Sync Manager 2 synchronization mode. 00h:FreeRun(not synchronized)									
		01h:SM2(synchronized w	,								
		02h:DC SYNC0(synchror		nt)							
	02h	Cycle time	0~4294967295	U32	rw	NO	All				
	0211	Set Sync Manager period.									
		Set one of 1000000 (1m		4000000 (4ms)	. 8000000	(8ms).	10000000				
		(10ms). If set other valu									
		cycle setting).	,			J					
	03h	Shift time	0~4294967295	U32	rw	NO	All				
		Offset time.		ı		1					
	04h	Sync modes supported	0~65535	U16	ro	NO	All				
		Set the supported synchro		ı		1					
		BIT0:FreeRun mode supp									
		0:not supported; 1:Fre		1							
		This servo driver is set									
		BIT1:SM synchronization mode supported									
		0:not supported; 1:SM2 event synchronization supported									
		This servo driver is set to 1.									
		BIT4-2:DC synchronization mode supported									
		000b:not supported									
		001b:DC sync0 event supported									
		This servo driver is set to 001b.									
		BIT6-5: output offset supported									
		00b:not supported									
		01b:local clock offset supported									
		This servo driver is set	to 00b.								
		BIT15-7:Reserved					_				
1C32	05h	Minimum cycle time	0~4294967295	U32	ro	NO	All				
		The minimum value of the			et.						
	06h	Calc and copy time	0~4294967295	U32	ro	NO	All				
		From SM2 event, SYNC0									
		This time can also be exte			e signal.						
	08h	Command	0~65535	U16	ro	NO	All				
		Not support									
	09h	Delay time	0~4294967295	U32	ro	NO	All				
		Not support									
	0Ah	Sync0 cycle time	0~4294967295	U16	ro	NO	All				
		When DC SYNC0 (1C32)	2.	ister 09A0h val	ue is set.						
		Except DC SYNC0, pleas					1				
	0Bh	Cycle time too small	0~65535	U16	ro	NO	All				
	0.51	Not support	T 0:		Т	-	1				
	0Ch	SM-event missed	0~65535	U16	ro	NO	All				
		Not support	T - :								
	0Dh	Shift time too short	0~65535	U16	ro	NO	All				
		Not support									

Index	Sub-Index	Name / Description	Range	DateType	Access	PDO	Op-mode
	0Eh	RxPDO toggle failed	0~65535	U16	rw	NO	All
		Not support					
	20h	Sync error	0~1	BOOL	ro	NO	All
		Sync error					

This setting value is a reference value, not a guaranteed value.

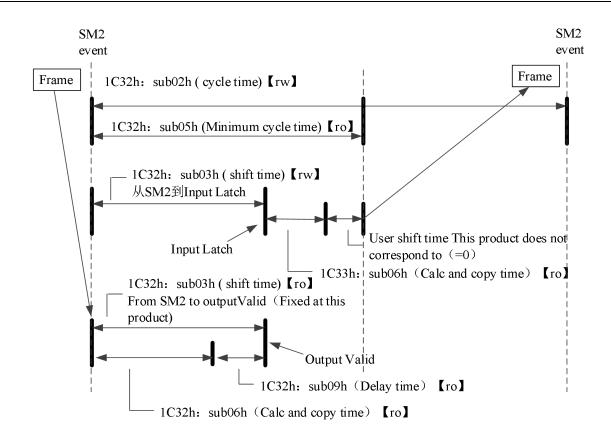
Sync n	nanager 3 sy	nchronization (1C33h)										
Index	Sub-Index	Name/Description	Range	DateType	Access	PDO	Op-mode					
1C33h	00h	Number of entries	0~20h	U8	ro	NO	All					
		Represents the subindexes for	or this object. The	value is fixed	d at 20h.							
	01h	Sync mode	0~65535	U16	rw	NO	All					
		Set Sync Manager 3 synchro	onization mode.									
			00h:FreeRun (not synchronized)									
		01h:SM2 (synchronized with										
		02h:DC SYNC0 (synchroniz		vent)								
	02h	Cycle time	0~4294967295	U32	rw	NO	All					
		Set Sync Manager period.				1	1					
		1 2 1										
		10000000(10ms). If set		. , , , ,								
		synchronization cycle setting				1						
	03h	Shift time	0~4294967295	U32	rw	NO	All					
		Offset time										
	04h	Sync modes supported	0~65535	U16	ro	NO	All					
	O III	Set the supported synchroniz		010	10	110	7111					
		BIT0: FreeRun mode supported										
		2:not supported; 1:FreeRun mode supported										
		U:not supported; 1:FreeRun mode supported This servo driver is set to 1.										
		BIT1:SM synchronization mode supported										
		0:not supported; 1:SM2 event synchronization supported										
		This servo driver is set to 1.	iii synemonization	варропеа								
		BIT4-2:DC synchronization mode supported										
		000b:not supported										
		001b:DC sync0 event suppo	rted									
		This servo driver is set to 00										
		BIT6-5:output offset suppor										
		00b:not supported	ica									
		01b:local clock offset suppo	rted									
		This servo driver is set to 00										
		BIT15-7:Reserved										
1C33h	05h	Minimum cycle time	0~4294967295	5 U32	ro	NO	All					
103311	0311	The minimum value of the c				110	7111					
	06h	Calc and copy time	0~4294967295		ro	NO	All					
	OON	From SM2 event, SYNC0 e				110	7111					
		This time can also be extend										
	08h	Command	0~65535	U16	ro	NO	All					
	Oon	Not support	0 -03333	010	10	110	7 111					
	09h	Delay time	0~4294967295	U32	***	NO	All					
	0911	Not support	0~4294907293	032	ro	NO	All					
	0Ah	Sync0 cycle time	0 4204067205	1116		NO	A 11					
	UAII		0~4294967295	5 U16	ro	NO	All					
	0D1-	The same value to 1C32h-0		III.C		NO	A 11					
	0Bh	Cycle time too small	0~65535	U16	ro	NO	All					
	0.01	Not support	0.65525	T T 1 6		NO	A 11					
	0Ch	SM-event missed	0~65535	U16	ro	NO	All					
	071	Not support	1			I						
	0Dh	Shift time too short	0~65535	U16	ro	NO	All					
		Not support	T									
	0Eh	RxPDO toggle failed	0~65535	U16	rw	NO	All					


Index	Sub-Index	Name/Description	Range	DateType	Access	PDO	Op-mode
		Not support					
	20h	Sync error	0~1	BOOL	ro	NO	All
		Sync error					

This setting value is a reference value, not a guaranteed value.

1)DC (SYNC0 event synchronization)

Synchronization method	Features				
Based on the time of the first axis	High-precision				
synchronize time information of	Compensation treatment shall be carried out at				
other slave stations	the main station side				


The specification of DC synchronous mode in this servo driver is as follows:

2)SM2 (SM2 event synchronization)

Synchronization method			Features				
Synchronize	with	RxPDO			delay	compensation	accuracy
receiving time			difference				
				ure the transm (special hardw		time at the upp .)	per device

The specification of SM2 synchronous mode in this servo driver is as follows:

8.3 Servo parameter area (0x2000~0x2FFF)

8.3.1 Object list

The object of 2000h - 5FFFh is distributed servo parameters. (servo parameter please refer to appendix of this manual).

Index

Index	Sub-index	Name
2000h	00h	P0-00
2001h	00h	P0-01
2002h	00h	P0-02
2003h	00h	P0-03
	•••	:
205Fh	00h	P0-95
2100h	00h	P1-00
2101h	00h	P1-01
2102h	00h	P1-02
2103h	00h	P1-03
	•••	•••
214Ah	00h	P1-74
2200h	00h	P2-00
2201h	00h	P2-01
2202h	00h	P2-02
2203h	00h	P2-03
		•••
2263h	00h	P2-99
2300h	00h	P3-00
2301h	00h	P3-01
2302h	00h	P3-02
2303h	00h	P3-03
		•••
232Eh	00h	P3-46

2500h	00h	P5-00
2501h	00h	P5-01
2502h	00h	P5-02
2503h	00h	P5-03
2547h	00h	P5-71
2700h	00h	P7-00
2701h	00h	P7-01
2702h	00h	P7-02
2703h	00h	P7-03
	•••	•••
2715h	00h	P7-21
2800h	00h	P8-00
2801h	00h	P8-01
2802h	00h	P8-02
2803h	00h	P8-03
281Ah	00h	P8-26

Sub-index

Name

Index	Sub-index	Name
3000h	00h	U0-00
3001h	00h	U0-01
3002h	00h	U0-02
3061h	00h	U0-97

Index	Sub-index	Name
4000h	00h	F0-00
•••	•••	•••
4106h	00h	F1-06

Index	Sub-index	Name
3100h	00h	U1-00
3101h	00h	U1-01
	•••	•••

Index	Sub-index	Name	Unit	Data range	Data type	Flag	PDO
5000h	00h	Encode Single turn Position	-	-2147483648 ~ 2147483647	I32	ro	TxPDO
5001h	00h	Encode MultRevolutions	-	-2147483648~ 2147483647	I32	ro	TxPDO

Index	Sub-index	Name	Unit	Data range	Data type	Flag	PDO
5002h	00h	ModeSwitch Deceleration time	-	0~65535	U16	rw	RxPDO

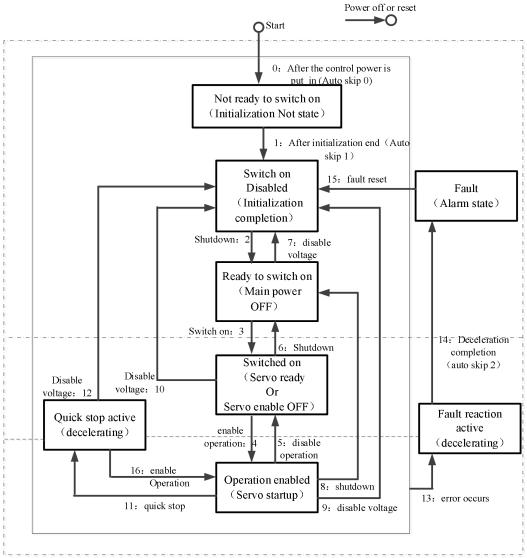
8.3.2 Object overview

For example: P1-04, EtherCAT distributes to 2104h.

P3-10, EtherCAT distributes to 230Ah.

12-15bit : 2 represents servo parameter area 8-11 bit : 0-F represents group P number 0-7 bit : 00-FF represents parameters in group P

8.4 Driver Profile area(0x6000~0x6FFF)


8.4.1 Object list

Index	Sub-index	Name
603Fh	00h	Abort connection option code
6040h	00h	Control word
6041h	00h	Status word
605Ah	00h	Quick stop option code
605Bh	00h	Shutdown option code
605Bh	00h	Disable operation option code
605Bh	00h	Halt option code
605Eh	00h	Fault reaction option code
6060h	00h	Modes of operation
6061h	00h	Modes of operation display
6062h	00h	Position demand value
6063h	00h	Position actual internal value
6064h	00h	Position actual value
6065h	00h	Following error window
6066h	00h	Following error time out
6067h	00h	Position window
6068h	00h	Position window time
6069h	00h	Velocity sensor actual value
606Bh	00h	Velocity demand value
606Ch	00h	Velocity actual value
606Dh	00h	Velocity window
606Eh	00h	Velocity window time
606Fh	00h	Velocity threshold
6070h	00h	Velocity threshold time
6071h	00h	Target torque
6072h	00h	Max torque
6073h	00h	Max current
6074h	00h	Torque demand
6075h	00h	Motor rated current
6076h	00h	Motor rated torque
6077h	00h	Torque actual value
6078h	00h	Current actual value
6079h	00h	DC link circuit voltage
607Ah	00h	Target position
0077111	-	Position rang limit
	00h	Number of entries
607Bh	01h	Min position range limit
	02h	Max position range limit Max position range limit
607Ch	00h	Home offset
OU / CII	-	Software position limit
	00h	Number of entries
607Dh	01h	Min position limit
	02h	Max position limit
606Eh	02h 00h	Polarity
607Fh	00h	Max Profile velocity
6080h	00h	Max motor speed
6081h	00h	Profile velocity
6082h	00h	End velocity End velocity
6083h	00h	Profile acceleration
6084h	00h	Profile acceleration Profile deceleration
6084h	00h	Quick stop deceleration
6086h	00h	Motion profile type
OUSOII	UUII	Monon prome type

Index	Sub-index	Name
6087h	00h	Torque slope
6088h	00h	Torque profile type
	-	Position encoder resolution
600Eh	00h	Number of entries
608Fh	01h	Encoder increments
	02h	Motor revolutions
	-	Gear ratio
6091h	00h	Number of entries
007111	01h	Motor revolutions
	02h	Shaft revolutions
	-	Feed constant
6092h	00h	Number of entries
	01h	Feed
60001	02h	Shaft revolutions
6098h	00h	Homing method
	- 00h	Homing speeds Number of entries
6099h	00h	Speed during search for switch
		1 0
609Ah	02h 00h	Speed during search for zero Homing acceleration
60A3h	00h	<u> </u>
bUA3n	UUn	Profile jerk Profile jerk
	00h	Number of entries
60A4h	01h	Profile jerk1
	02h	Profile jerk2
60B0h	00h	Position offset
60B1h	00h	Velocity offset
60B2h	00h	Torque offset
60B8h	00h	Touch probe function
60B9h	00h	Touch probe status
60BAh	00h	Touch probe pos1 pos value
60BBh	00h	Touch probe pos1 neg value
60BCh	00h	Touch probe pos2 pos value
60BDh	00h	Touch probe pos2 neg value
	-	Interpolation time period
60C2h	00h	Number of entries
000211	01h	Interpolation time period value
	02h	Interpolation time index
60C5h	00h	Max acceleration
60C6h	00h	Max deceleration
	-	Supported Homing method
COE 21.	00h	Number of entries
60E3h	01h	1st supported Homing method
	20h	22nd assumented Housing mostly ad
60F2h	00h	32nd supported Homing method Positioning option code
60F4h	00h	Following error actual value
60FAh	00h	Control effort
60FCh	00h	Position demand internal value
60FDh	00h	Digital inputs
	-	Digital outputs
COPPI	00h	Number of entries
60FEh	01h	Physical outputs
	02	Bit mask
60FEh	00h	Target velocity
6502h	00h	Supported drive modes

8.4.2 PDS(Power Drive Systems)specification

According to the user command or abnormal detection, the state transition of the PDS associated with the power control of the servo driver is defined as follows.

After migrating to Operation enabled, please increase the time to more than 100ms and input the action command. The following table shows the PDS state migration events (migration conditions) and actions during migration. For the migration of PDS, the status migration is performed at the same time as the handshake is obtained (through 6041h: Statusword, confirm the status has been converted, and then send the next migration instruction).

]	PDS conversion	Event	Action
0	Auto skip 0	After the power supply is put into operation, or after the application layer is reset, it will automatically migrate.	After the power supply is put into operation, or after the application layer is reset, it will automatically migrate.
1	Auto skip 1	Automatic conversion after initialization.	Communications are established.
2	Shut down	The condition of receiving the Shutdown instruction.	Nothing special
3	Switch on	When the power supply is on, the condition of receiving the Switch on command.	Nothing special
4	Enable operation	The condition of receiving the Enable operation instruction.	The driver function is effective. In addition, all previous Set point data are cleared.
5	Disable operation	The condition of receiving the Disable operation instruction.	Invalid driver function.

6	When the power supply is on, the condition of receiving Shutdown command.		Nothing special
		Check out the condition of the power supply is off.	Trouming spoons
7	Disable voltage	the condition of receiving Disable voltage instruction. the condition of receiving Quick stop instruction. When ESM status is PreOP, SafeOP, OP, the condition of migrating to Init.	Nothing special
8	Shutdown	When the power supply is on, the condition of receiving the Shutdown instruction.	Driver function is invalid
9	Disable voltage The condition of receiving the Disable voltage command.		Driver function is invalid
10	Disable voltage	The condition of receiving the Disable voltage command. The condition of receiving the Quick stop command. When ESM status is PreOP, SafeOP, OP, the condition of migrating to Init.	Nothing special
11	Quick stop	The condition of receiving Quick stop command.	Execute Quick stop function.
12	Disable voltage	When Quick stop selected code is 1, 2, 3 and the condition of Quick stop action completion. When Quick stop code is 5, 6, 7, and the action of Quick stop is completed, the condition of receiving Disable voltage command. Check out the condition of power OFF.	Driver function is invalid.
13	Error occurs	Abnormal detection.	Execute Fault reaction function.
14	Auto skip 2	After the abnormal detection and deceleration processing is completed, it will be migrated automatically.	Driver function is invalid.
15	Fault reset	After the removal of abnormal factors, the condition of receiving the Fault reset instruction.	The fault factor does not exist, Excute the reset of the Fault state.
16	Enable operation	When Quick stop selected code is 5, 6, 7, the condition of receiving Enable operation command.	Driver function is effective.

8.4.3 Controlword (6040h)

The command to control the slave station (servo driver) such as PDS status migration is set through 6040h (control word).

Index	Sub-index	Naı	ne	Rang	Range Data type		Acces	s I	PDO	Op-mode
6040h	00h	Contro	lword	word 0~65535		U16	rw	R	xPDO	All
		Set the ser	rvo driver	control co	ommand	l for PDS sta	atus conve	rsion.		
		Bit inform	nation							
		15	14	13	12	11	10	9	8	
				F	3			oms	h	
		7	6	5	4	3	2	1	0	
		fr		R		eo	qs	ev	so	
		r = reserve	ed(not cor	responded	1)	fr = faul	t reset			
		oms = ope		-			ble operat	ion		
		(control m	node is bas	sed on bit))	qs = qui	uick stop			
		h = halt				ev = ena	able voltag	ge		
		so = switc	h on							

Command	bit7	bit3	bit2	bit1	bit0	PDS
Command	Fault reset	Enable	quick	Enable	Switch	conversion
		operation	stop	voltage	on	
Shutdown	0	-	1	1	0	2,6,8

Switch on	0	0	1	1	1	3
Switch on +	0	1	1	1	1	3+4
Enable operation						
Enable operation	0	1	1	1	1	4,16
Disable voltage	0	-	-	0	-	7,9,10,12
Quick stop	0	-	0	1	-	7,10,11
Disable operation	0	0	1	1	1	5
Fault reset	0->1	-	-	-	-	13

(1) Bit logic of quick stop command is effective under 0.

Please note that other bit logic and the opposite actions are performed.

2 Bit8 (halt): When it is 1, motor decelerating and stop are performed through 605Dh (Halt select code)

After the pause, the enable must be turned off to restart the action.

(3) Bit9, 6-4 (operation mode specific):

The following shows the change of OMS bit inherent in the control mode (OP mode). (for details, please refer to

the chapter of related objects of each control mode.)

Op-mode	Bit9	Bit6	Bit5	Bit4
pp	change on set-point	absolute / relative	change set immediately	new set-point
pv	-	-	-	-
tq	-	-	-	-
hm	-	-	-	start homing
csp	-	-	-	-
csv	-	-	-	-
cst	-	-	-	-

8.4.4 Statusword (6041h)

The status confirmation of slave station (servo driver) is carried out by 6041h (status word).

Index	Sub-index	Nan	ne	Range	e I	Data type	Access	P	DO	Op-mode	
6041h	00h	Status	word	0~6553	35	U16	ro	Tx	PDO	All	
		Indicates	the status	of the serv	o driver						
		Bit inforn	nation								
		15	14	13	12	11	10	9	8		
		1	r	or	ns	ila oms		rm	r		
		7	6	5	4	3	2	1	0		
		W	sod	qs	ve	f	oe	so	rsto		
		r = reserv	ed (not co	rresponde	d)	w = wa	rning				
		sod = swi	tch on dis	abled							
		oms = ope		-			iick stop				
		`		sed on bit)		ve = voltage enabled				
		ila = inter				f = fau	f = fault				
		oe = opera	ation enab	oled							
		rm = remo	ote			so = sv	so = switched on				
		rtso = reac	dy to swit	ch on							

Bit6,5,3-0 (switch on disabled/quick stop/fault/operation enabled/switched on/ready to switch on): confirm the

PDS status based on this bit. The following is the relationship between status and related bit.									
StatusWord	PDS	State							
xxxx xxxx x0xx 0000 b	Not ready to switch on	Initialize incompleted state							
xxxx xxxx x1xx 0000 b	Switch on disabled	Initialize completed state							
xxxx xxxx x01x 0001 b	Ready to switch on	Initialize completed state							
xxxx xxxx x01x 0011 b	Switched on	Servo enable OFF/servo ready							
xxxx xxxx x01x 0111 b	Operation enabled	Servo enable ON							
xxxx xxxx x00x 0111 b	Quick stop active	Stop at once							
xxxx xxxx x0xx 1111 b	Fault reaction active	Abnormal (alarm) judgment							
xxxx xxxx x0xx 1000 b	Fault	Abnormal (alarm) state							

Bit4 (voltage enabled) = 1: power supply is ON PDS.

Bit5 (quick stop) = 0: PDS receives quick stop request. The bit logic of quick stop is effective under 0. Please note

that other bit logic and the opposite actions are performed.

Bit7 (warning) = 1, warning occurs. When warning, PDS status will not change and motor will continue to operate.

Bit9 (remote) = 0(local), the status that 6040(Controlword) cannot operate.

Bit9 =1(remote), the status that 6040(Controlword) can operate. The ESM state changes to 1 when the state transforms above PreOP.

Below bit13,12,10 (operation mode specific): change of OMS bit inherent in control mode. (for details, please refer to the chapter of related objects of each control mode.)

Op-mode	Bit13	Bit12	Bit10
pp	following error	set-point acknowledge	target reached
pv	-	speed	target reached
tq	-	-	target reached
hm	homing error	homing attained	target reached
csp	following error	drive follows command value	-
csv	-	drive follows command value	-
cst	-	drive follows command value	-

Bit11(internal limit active): the main reason for the internal limit is that the bit11 (internal limit active) of 6041h (status word) changes to 1.

Bit15,14(reserved): This bit is not used (fixed 0).

8.5 Control mode setting

8.5.1 Supported drive modes (6502h)

This servo driver can confirm the supported modes of operation according to 6502h (supported drive modes).

This sei	vo driver car	1 COMMIN	onfirm the supported modes of operation according to 6502n (supported drive modes).								
Index	Sub-index	Nam	ne / Descripti	on	Range]	Data type	Acces	S	PDO	Op-mode
6502h	00h	Suppo	orted drive m	odes	0~4294967	295	U32	ro	1	XPDO	All
		suppor	ted control m	node (M	ode of opera	ation).					
		When 1	When the value is 1, it represents the supported mode in this r								
			ormation	•							
			3116			151	0	9		8	
			r			r		cst	С	sv	
			0			0		1		1	
		7	6	5	4	3	2	1	(0	
		csp	r	hm	r	tq	pv	r	p	р	
		1	0	1	0	1	1	0		1	
				•							
		Bit		ı	Mode of ope	eration			Abbr	Corre	esponding
		0	Profile positi	ion mod	e (Profile po	osition c	control mod	le)	pp		YES
		2	Profile veloc	ity mod	e(Profile sp	eed con	trol mode)		pv		YES
		3	Torque profi	le mode	(Profile toro	que cont	trol mode)		tq		YES
			Homing mod						hm		YES
			Cyclic synch					control	csp		YES
			mode)				1		1		
		8									YES
			mode)		•	` ` `	1				
1		0	Cyclic syncl	hronous	torque mo	de (Cyc	elic torque	control	cst		YES
		9 Cyclic synchronous torque mode (Cyclic torque control							CSt		I LD
			mode)	monous	torque mo	ac (cyc	ine torque	Control	CSt		TES

8.5.2 Modes of operation(6060h)

Set the control mode through 6060h (Modes of operation).

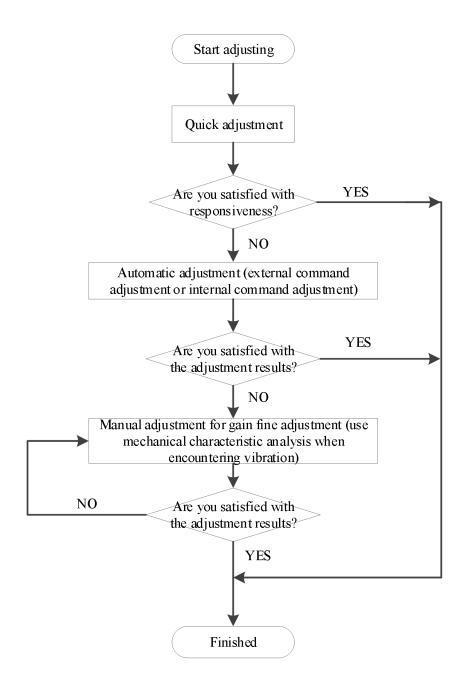
Index	Sub-index	Name/Description	Range	DateType	Access	PDO	Op-mode
6060h	00h	Mode of operation	-128~127	I8	rw	RxPDO	All

Set the control mode of servo driver. Non corresponding control mode setting is inhibited. Mode of operation Abbr. bit Corresponding -128~ Reserved -1 0 No mode changed/No mode assigned (no control mode changed/no control distribution) Profile position mode (Profile position control mode) YES pp 3 Profile velocity mode (Profile speed control mode) YES pv 4 Torque profile mode (Profile torque control mode) YES tq Homing mode (origin reset position mode) YES 6 hm 8 Cyclic synchronous position mode (Cyclic position YES csp control mode) 9 Cyclic synchronous velocity mode (Cyclic speed YES csv control mode) Cyclic synchronous torque mode(Cyclic torque 10 YES cst control mode) 11~127 Reserved

Because 6060h (modes of operation) is default = (no mode change / no mode assigned), please set the control mode value to be used after the power is put into operation. When the set value of 6060h is 0 and the set value of 6061h is 0, if the PDS state is migrated to Operation enabled, E-881 (control mode setting fault protection) occurs. After the initial state of 6060h = 0 (no mode assigned) is transferred to the supported control mode (PP, PV, TQ, HM, CSP, CSV, CST), set 6060h = 0 is seemed as "no mode changed", and the control mode can not be switched. (keep the previous control mode).

8.5.3 Modes of operation display(6061h)

The confirmation of the control mode inside the servo driver is performed according to 6061h (modes of operation display). After 6060h (modes of operation) is set, please confirm whether it is feasible to set this object action through detection.


Index	Sub-index	Nam	e/Description	Range	DateType	Access	s I	PDO	Op-mode
6061h	00h	Mode of	operation display	-128~127	I8	ro	Tz	kPDO .	All
		The curren	ent control mode.						
		bit	bit Mode of operation					Corre	esponding
		-128~	Reserved				-		-
		-1							
		0	No mode changed/		_		-		-
			(no control mo	ode changed	d/no control	mode			
			distribution)						
		1	Profile position mo	<u> </u>			pp		YES
		3	Profile velocity mo	ode (Profile sp	peed control n	node)	pv		YES
		4	Torque profile mod			iode)	tq	_	YES
		6	Homing mode (ori				hm		YES
		8	Cyclic synchronou control mode)	as position n	node (Cyclic	position	csp		YES
		9	Cyclic synchrono control mode)	Cyclic synchronous velocity mode (Cyclic speed					YES
		10	Cyclic synchronous torque mode (Cyclic torque control mode)						YES
		11~127	,						-

9 Servo gain adjustment

9.1 Overview of servo gain adjustment

9.1.1 Overview and process

The servo driver needs to drive the motor as fast and accurately as possible to track the instructions from the upper computer or internal settings. In order to meet this requirement, the servo gain must be adjusted reasonably. Servo gain factory value is adaptive mode, but different machines have different requirements for servo responsiveness; the following figure is the basic process of gain adjustment, please adjust according to the current machine status and operation conditions.

9.1.2 Differences between these adjustment modes

Adjustment modes are divided into adaptive and auto-tuning, and their control algorithms and parameters are independent. Among them, the auto-tuning mode is divided into three functions: fast adjustment, automatic adjustment and manual adjustment. The three functions are the same in essence but different in implementation. Refer to the corresponding chapters of each function.

Mode	Туре	Parameters	Rigidity	Responsiveness	Related parameters
Adaptive	Automatic adaptation	P2-01.0=1	Middle	150ms	P2-05 adaptive speed loop gain P2-10 adaptive speed loop integral P2-11 adaptive position loop gain P2-07 adaptive inertia ratio P2-08 adaptive speed observer gain P2-12 adaptive stable max inertia ratio
	Fast adjustment		High	10 ~50ms	P0-07 First inertia ratio P1-00 Speed loop gain
Auto-tuning	Automatic adjustment	P2-01.0=0	High	10ms	P1-01 Speed loop integral P1-02 Position loop gain P2-35 Torque instruction filtering time
	Manual adjusting		High	Determined by	constant 1 P2-49 Model loop gain

9.2 Rotary inertia presumption

9.2.1 Overview

Rotational inertia estimation is the function of automatic operation (forward and reverse) in the driver and estimate the load inertia in operation.

Rotational inertia ratio (the ratio of load inertia to motor rotor inertia) is a benchmark parameter for gain adjustment, and it must be set to the correct value as far as possible.

Parameter	Meaning	Default setting	Unit	Setting range	Modification	Effective
P0-07	First inertia ratio	500	%	0~50000	anytime	At once

9.2.2 Notes

Occasions where inertia cannot be presumed

♦ Mechanical systems can only operate in one direction

The occasion where inertia presumption is easy to fail

- ♦ Excessive load moment of inertia
- The running range is narrow and the travel is less than 0.5 circles.
- The moment of inertia varies greatly during operation.
- Mechanical rigidity is low and vibration occurs when inertia is presumed.

Notes of inertia presumption

- ♦ Since both directions are rotatable within the set range of movement, please confirm the range or direction of movement; and ensure that the load runs in a safe journey.
- ◆ If the presumed inertia under default parameters runs jitter, indicating that the present load inertia is too large. It is also possible to set the initial inertia to about twice the current one and execute again under larger loads.
- ◆ Driver inertia ratio recognition upper limit is 500 times (parameter upper limit is 20000). If the estimated inertia ratio is exactly 20000, it means that the inertia ratio has reached the upper limit and can not be used, please replace the motor with larger rotor inertia.

Other notes

- At present, the inertia switching function is not supported, and the second inertia ratio is invalid.
- ◆ The inertia ratio upper limit changes to 500 times for the driver firmware 3700 and higher version (parameter upper limit value is 50000).

9.2.3 Operation tool

The presumptive tools of load moment of inertia are driver panel and XinjeServo software.

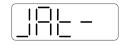
Operation tool	Description		
Driver panel	Driver firmware needs version 4200		
XinjeServo software	All versions of software supported		

Note: driver firmware version can be checked through U2-07.

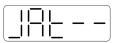
9.2.4 Operation steps

Estimate the inertia through the driver panel

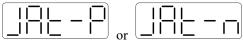
1. Parameter setting


Parameter	Setting	Default setting	Unit	Range	Modification	Effective
P2-15	Inertia configured trip	100	0.01 circle	1~300	Anytime	At once

P2-17	Inertia identification and internal instruction auto-tuning max speed	/	rpm	0~65535	Anytime	At once
P2-18	Inertia identification initial inertia ratio	500	%	1~20000	Anytime	At once


The recommended parameters of P2-17 are 500rpm or more. Low instruction speed will lead to inaccurate identification of inertia ratio.

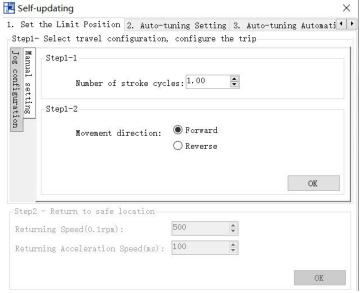
2. Execute the inertia identification


Before inertia identification, please confirm the direction of servo rotation by using F1-00 jog motion function. Initial direction of servo operation is determined by INC or DEC at the beginning of inertia identification. Servo entering parameter F0-07 in BB state:

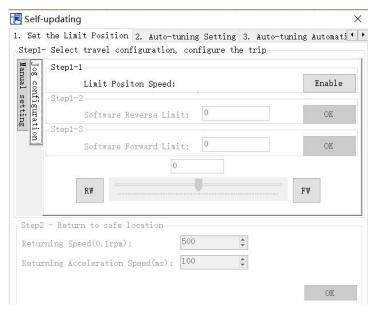
Press ENTER, servo is enabled:

Press INC or DEC to run forward or reverse (select one of them):

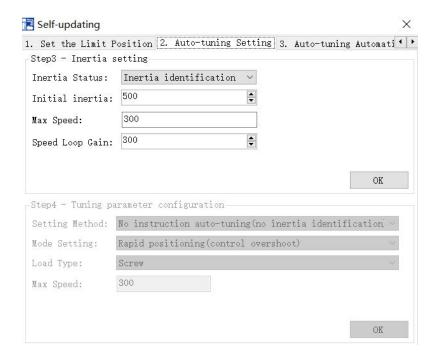
At this point, start action, under the condition of P0-05 = 0 (initial positive direction), if press INC, then turn forward and then reverse; if press DEC, turn reverse and then forward. If the inertia identification is successful, the load inertia ratio is prompted and written to P0-07 automatically after several forward and reverse operations. If the inertia identification error occurs, the error code will be displayed. Press STA/ESC key to exit the panel inertia identification operation.

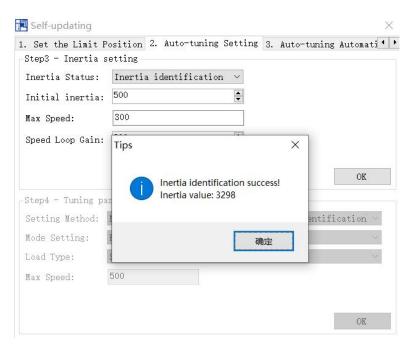

Alarm for inertia identification of panel

Error code	Meaning	Reasons and solutions	Reasons
Err-1	Motor torque saturation	① Initial inertia is too small; in adaptive mode, switch to large inertia mode P2-03.3=1 or the initial inertia of inertia identification P2-18 set to 2 times of the present value. ② The maximum speed is too high (P2-17), but it is recommended not to be less than 500 rpm. Low instruction speed will lead to inaccurate identification of inertia ratio. ③ Torque limit too small (P3-28/29)	Initial inertia too small; Maximum speed too large; Torque limit too small
Err-2	Value error is too large when calculating the inertia	① The maximum speed limit is too small (P2-17), but it is recommended not to be less than 500 rpm. Low instruction speed will lead to inaccurate identification of inertia ratio. ② The presumed inertia trip is too small. It is suggested that the minimum for P2-15 should no be less than 50 (0.5 cycles). If the trip is too small, the identification of inertia ratio will be inaccurate. ③ mechanism friction too large ④ overshoot	The maximum speed limit is too small; the travel is too small; the friction of the mechanism is too large; the overrun occurs
Err-3	Driver internal trip calculation error	1 The presumed inertia trip is too small. It is suggested that the minimum for P2-15 should no be less than 50 (0.5)	Contact us


		cycles). If the trip is too small, the identification of inertia	
		ratio will be inaccurate.	
	Unrestrained		
Err-5	Vibration in the	Unhandled vibration occurs	Unhandled
E11-3	Process of Inertia	Offinancied violation occurs	vibration occurs
	Identification		
	Driver is not	1) Enable have been opened. P5-20 can be set to 0 first	Will occur when
Err-6	currently in BB	②When the driver alarms, it will appear. Press ESC key	enable is turned on
	state	to exit the auto-tuning interface to see if there is an alarm.	or driver has alarm
	The driver alarms in	Driver has alarm, press ESC key to exit the auto-tuning	
Err-7	the process of	interface, check the alarm code, first solve the alarm and	Driver has alarm
	inertia identification	then make inertia estimation.	

Estimate the inertia through XinJeServo software


1. Click "Gain adjustment---Self tuning" on the main interface of XinjeServo


2. Choose 【Jog configuration】 or 【Manual setting】 to configure the trip.

3. Auto-tuning configuration setting

4. Click OK, Start to estimate inertia.

Note:

- (1) If the auto-tuning interface is closed directly, the driver only configures inertia ratio parameters.
- (2) The detailed steps of XinJeServo's presumptive inertia refer to XinJeServo's help document.

9.3 Fast adjustment

9.3.1 Overview

Fast adjustment needs to set the moment of inertia of load first, then turn off the adaptive function. If the inertia does not match, it will cause oscillation alarm. Servo firmware version 3640 and later versions support this function, and the version is viewed through U2-07. Fast adjustment of gain parameters belongs to auto-tuning mode.

9.3.2 Fast adjustment steps

- 1. Estimate the load inertia through servo driver panel or XinJeServo software, refer to chapter <u>9.2 Rotary inertia</u> presumption;
- 2. Set the rigidity level P0-04

Note: P2-01.0 is the first bit of P2-01

9.3.3 Rigidity level corresponding gain parameters

The rigidity level should be set according to the actual load. The larger the P0-04 value, the greater the servo gain. If there is vibration in the process of increasing the rigidity level, it is not suitable to continue to increase. If vibration suppression is used to eliminate vibration, it can try to continue to increase. The following is the recommended rigidity level of the load for reference.

Supports three types of rigidity levels, selected through P6-00.0:

- (1) P6-00.0=0: Standard mode [default]
- Rigid level P0-04, associated with 4 parameters, P1-00, P1-01, P1-02, P2-35;
 - (2) P6-00.0=1: Positioning mode, also known as soft mode

By balancing responsiveness and using gain switching, the overshoot at the end of positioning is minimized, with a rigidity level of P0-04 and associated with 7 parameters, P1-00, P1-01, P1-02, P2-35, P1-05, P1-06, P1-07. Bind to force gain switching, P1-14=0x00A1;

(3) P6-00.0=2: Quick positioning mode

Enable model loop and disturbance observer Dob, rigidity level P0-04, associate 5 parameters, P1-00, P1-01, P1-02, P2-35, P2-49. Forcefully bind P2-00.0 and P2-41 of the disturbance observer Dob, as well as P2-47.0 and P2-49 of the model loop.

Rigid level table for standard mode (P6-00.0=0)

Rigid grade P0-04	Speed loop gain P1-00	Speed loop integral time constant P1-01	Position loop gain P1-02	Torque command filtering time constant 1 P2-35
0	15	50000	24	1326
1	20	39789	32	995
2	25	31831	40	796
3	30	26526	48	663
4	35	22736	56	568
5	45	17684	72	442
6	60	13263	96	332
7	75	10610	120	265
8	90	8842	144	221
9	110	7234	176	181
10	140	5684	224	142
11	180	4421	288	111
12	250	3183	400	80
13	300	2653	480	66

Rigid grade P0-04	Speed loop gain P1-00	Speed loop integral time constant P1-01	Position loop gain P1-02	Torque command filtering time constant 1 P2-35
14	350	2274	560	57
15	400	1989	640	50
16	500	1592	800	40
17	600	1326	960	33
18	750	1061	1200	27
19	900	884	1440	22
20	1150	692	1840	17
21	1400	568	2240	14
22	1700	468	2720	12
23	2100	379	3360	9
24	2500	318	4000	8
25	2800	284	4480	7
26	3100	257	4960	6
27	3400	234	5440	6
28	3700	215	5920	5
29	4000	199	6400	5
30	4500	177	7200	5
31	5000	159	8000	5
32	5500	145	8800	3
33	6000	133	9600	3
34	6500	123	10400	3
35	7000	114	11200	0
36	7500	106	12000	0
37	8000	100	12800	0
38	8500	94	13600	0
39	9000	88	14400	0
40	9500	84	15200	0
41	10000	80	16000	0

Rigid level table for positioning mode (P6-00.0=1)

Rigid grade P0-04	Speed loop gain P1-00	Speed loop integral time constant P1-01	Position loop gain P1-02	Torque command filtering time constant 1 P2-35	Second speed loop gain P1-05	Second speed loop integral time constant P1-06	Second position loop gain P1-07
0	15	50000	24	1326	15	51200	40
1	20	39789	32	995	20	51200	48
2	25	31831	40	796	25	51200	56
3	30	26526	48	663	30	51200	72
4	35	22736	56	568	35	51200	96
5	45	17684	72	442	45	51200	120
6	60	13263	96	332	60	51200	144
7	75	10610	120	265	75	51200	176
8	90	8842	144	221	90	51200	224
9	110	7234	176	181	110	51200	288
10	140	5684	224	142	140	51200	400
11	180	4421	288	111	180	51200	480
12	250	3183	400	80	250	51200	560
13	300	2653	480	66	300	51200	640
14	350	2274	560	57	350	51200	800
15	400	1989	640	50	400	51200	960
16	500	1592	800	40	500	51200	1200
17	600	1326	960	33	600	51200	1440

Rigid grade P0-04	Speed loop gain P1-00	Speed loop integral time constant P1-01	Position loop gain P1-02	Torque command filtering time constant 1 P2-35	Second speed loop gain P1-05	Second speed loop integral time constant P1-06	Second position loop gain P1-07
18	750	1061	1200	27	750	51200	1840
19	900	884	1440	22	900	51200	2240
20	1150	692	1840	17	1150	51200	2720
21	1400	568	2240	14	1400	51200	3360
22	1700	468	2720	12	1700	51200	4000
23	2100	379	3360	9	2100	51200	4480
24	2500	318	4000	8	2500	51200	4960
25	2800	284	4480	7	2800	51200	5440
26	3100	257	4960	6	3100	51200	5920
27	3400	234	5440	6	3400	51200	6400
28	3700	215	5920	5	3700	51200	7200
29	4000	199	6400	5	4000	51200	8000
30	4500	177	7200	5	4500	51200	8000
31	5000	160	8000	5	5000	51200	8000
32	5500	145	8800	3	5500	51200	8000
33	6000	133	9600	3	6000	51200	8000
34	6500	123	10400	3	6500	51200	8000
35	7000	114	11200	0	7000	51200	8000
36	7500	106	12000	0	7500	51200	8000
37	8000	100	12800	0	8000	51200	8000
38	8500	94	13600	0	8500	51200	8000
39	9000	88	14400	0	9000	51200	8000
40	9500	84	15200	0	9500	51200	8000
41	10000	80	16000	0	10000	51200	8000

Fast positioning mode rigidity level table (P6-00.0=2)

Rigid grade P0-04	Speed loop gain P1-00	Speed loop integral time constant P1-01	Position loop gain P1-02	Torque command filtering time constant 1 P2-35	Model loop gain P2-49
0	71	50000	24	20	24
1	80	39789	32	20	32
2	89	31831	40	20	40
3	100	26526	48	20	48
4	112	22736	56	20	56
5	125	17684	72	20	72
6	140	13263	96	20	96
7	157	10610	120	20	120
8	176	8842	144	20	144
9	198	7234	176	20	176
10	221	5684	224	20	224
11	248	4421	288	20	288
12	278	3183	400	20	400
13	311	2653	480	20	480
14	349	2274	560	20	560
15	390	1989	640	20	640
16	437	1592	800	20	800
17	490	1326	960	20	960
18	549	1061	1200	20	1200
19	615	884	1440	20	1440
20	689	692	1840	20	1840

Rigid grade P0-04	Speed loop gain P1-00	Speed loop integral time constant P1-01	Position loop gain P1-02	Torque command filtering time constant 1 P2-35	Model loop gain P2-49
21	771	568	2240	20	2240
22	864	468	2720	20	2720
23	968	379	3360	20	3360
24	1084	318	4000	8	4000
25	1214	284	4480	7	4480
26	1360	257	4960	6	4960
27	1523	234	5440	6	5440
28	1705	215	5920	5	5920
29	1910	199	6400	5	6400
30	2139	177	7200	5	7200
31	2396	160	8000	5	8000
32	2684	145	8800	3	-
33	3006	133	9600	3	-
34	3367	211	10400	3	-
35	3771	189	11200	0	-
36	4223	168	12000	0	-
37	4730	150	12800	0	-
38	5298	134	13600	0	-
39	5934	107	14400	0	-
40	6646	95	15200	0	-
41	6646	95	16000	0	-

9.3.4 Notes:

- ◆ In the fast adjustment mode, the gain parameters corresponding to the rigidity level can be independently fine tuned.
- ◆ The quick adjustment mode will be configured with a rigid level by default. If the gain does not meet the mechanical requirements, please gradually increase or decrease the setting.
- ◆ To ensure stability, the model loop gain is given relatively small at low rigidity levels. When there are high response requirements, this parameter value can be increased separately.
- ♦ When vibration occurs during rapid adjustment, the torque command filter P2-35 can be modified. If there is no effect, mechanical characteristic analysis can be used to set relevant notch parameters (refer to 9.7 Vibration Suppression).

9.4 Auto-tuning

9.4.1 Overview

Auto-tuning is divided into internal instruction auto-tuning and external instruction auto-tuning.

Auto-tuning (internal instruction) refers to the function of automatic operation (forward and reverse reciprocating motion) of servo unit without instructions from the upper device and adjusting according to the mechanical characteristics in operation.

Auto-tuning (external instruction) is the function of automatically optimizing the operation according to the instructions from the upper device.

The automatic adjustments are as follows:

- ◆ Load moment of inertia
- ◆ Gain parameters (speed loop, position loop, model loop gain)
- ◆ Filter (notch filter, torque instruction filter)

9.4.2 Notes

Untunable occasions

♦ Mechanical systems can only operate in one direction.

Setting the occasion prone to failure

- ♦ Excessive load moment of inertia
- The moment of inertia varies greatly during operation.
- Low mechanical rigidity, vibration during operation and failure of detection positioning.
- ♦ The running distance is less than 0.5 circles.

Preparations before auto-tuning

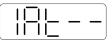
- ♦ Use position mode;
- Driver in bb status;
- ◆ Driver without alarm;
- ♦ The matching of the number of pulses per rotation and the width of positioning completion should be reasonable.

9.4.3 Operation tools

Internal instruction auto-tuning and external instruction auto-tuning can be executed by driver panel and XinJeServo software.

Auto-tuning mode	Operation tools	Limit item
Internal instruction	XinJeServo software	All the versions support
auto-tuning external instruction auto-tuning	Driver panel	Driver firmware needs 4200 and higher versions

Note: please check the driver firmware version through U2-07.


9.4.4 Internal instruction auto-tuning steps

Driver panel auto-tuning steps

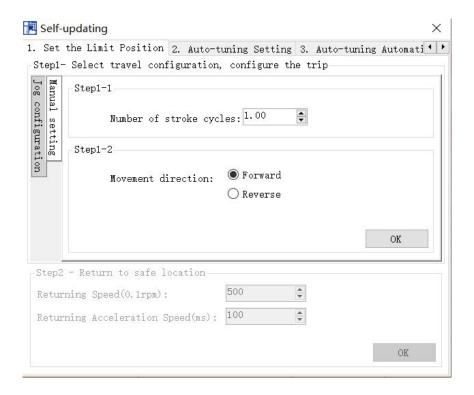
- 1. The inertia identification is carried out, and the inertia estimation steps please refer to chapter 9.2.4.
- 2. Enter F0-09, panel display iat-;

3. Press ENTER, panel display iat--; servo is in enabled status right now;

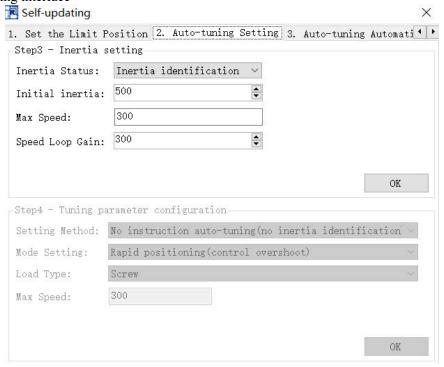
4. Press INC or DEC, panel display is tune and flashing, enter auto-tuning status.

5. Driver will automatically send pulse instructions, if the auto-tuning is successful, the panel shows done and flashing.

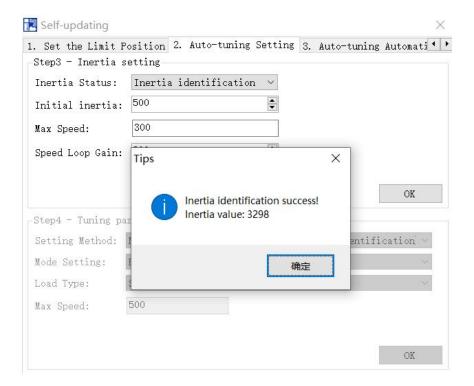
6. Press STA/ESC to exit internal instruction auto-tuning.

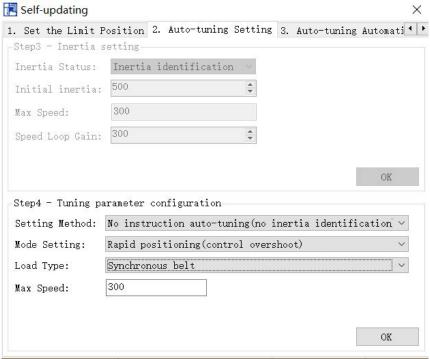

Note: In the process of auto-tuning, press STA/ESC will exit the auto-tuning operation and use the gain parameters at the exit time. If auto-tuning fails, it is necessary to initialize the driver before auto-tuning again.

■ Panel alarm in auto-tuning process


Error code	Meaning	Reasons	
		Too large inertia ratio; too weak rigidity of	
Err-1	Failure to search for optimal gain	mechanism	
		Please make sure that there is no overrun	
Err-2	Overtrip alarm in auto-tuning process	and alarm before auto-tuning.	
	Driver is not in "bb" state at the time of	Please make sure the present status of	
Err-6	operation	driver.	
Err-7	Driver alarmed in auto-tuning process	The driver alarm occurs.	

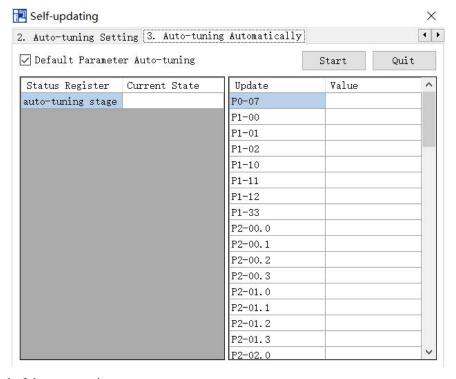
XinJeServo software auto-tuning steps


- 1. Click auto-tuning on the XinJeServo software main interface.
- 2. Set the auto-tuning trip in jog mode or manually.

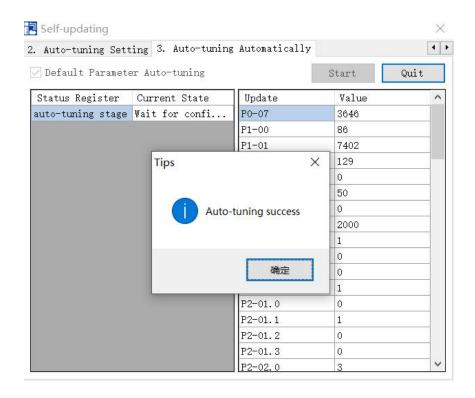

3.Set the auto-tuning interface

4.Click OK to estimate the inertia.

5.Set the auto-tuning parameters



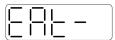
Auto-tuning mode	Description		
Soft	Make a soft gain adjustment. Besides gain adjustment, notch filter is automatically adjusted.		
Fast positioning	Make special adjustment for positioning purpose. Besides gain adjustment, the model loop gain and notch filter are automatically adjusted.		


Fast positioning (control overshoot)	In the use of positioning, we should pay attention to adjusting without overshoot. Besides gain adjustment, the model loop gain and notch filter are automatically adjusted.

Load type	Description		
Synchronous belt	Fit for the adjustment of lower rigidity mechanism such as synchronous belt mechanism.		
Screw rod	It is suitable for adjustment of higher rigidity mechanism such as ball screw mechanism. If there is no corresponding mechanism, please choose this type.		
Rigid connection	It is suitable for the adjustment of rigid body system and other mechanisms with higher rigidity.		

6. Start auto-tuning

7. Wait for the end of the auto-tuning.



9.4.5 External instruction auto-tuning steps

Driver panel auto-tuning steps

The inertia identification is carried out and the step of inertia estimation please refers to the driver panel inertia estimation (9.2.4 Operation steps)

Enter parameter F0-08, it will show Eat- (Exteral Refrence Auto-tuning)

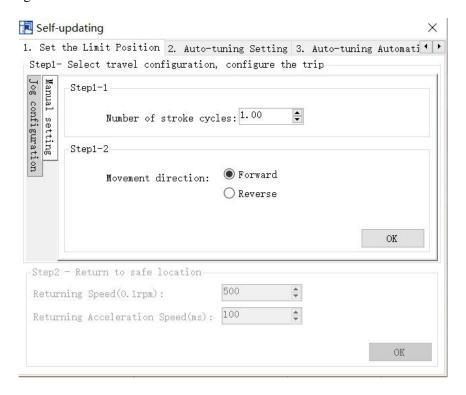
Press ENTER, if the enable is not open, the panel displays Son and flickers, waiting for the enabler to open, if the enabler has been opened, skip this step;

Servo enable, the panel displays tune and flickers, enter auto-tuning status.

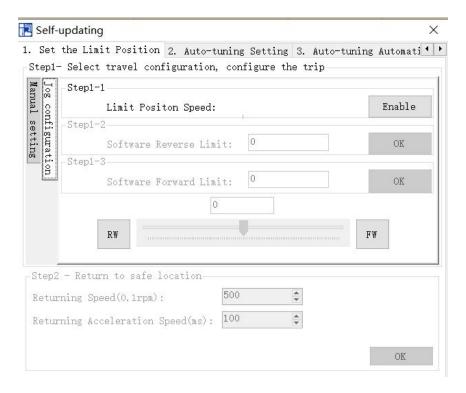
The upper device starts to send pulse, if the auto-tuning is successful, it displays done and flickers.

1. Press STA/ESC to exit the external instruction auto-tuning.

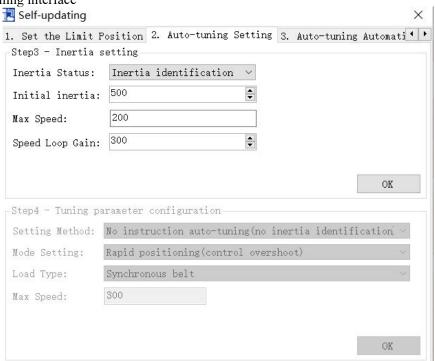
Note: in the auto-tuning process, press STA/ESC will exit the auto-tuning, and use the gain parameters at the exit moment.

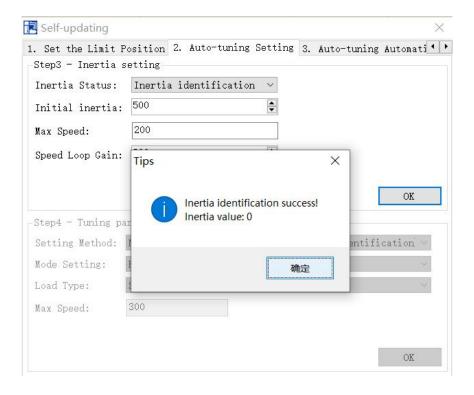

■ Panel error alarm in auto-tuning process

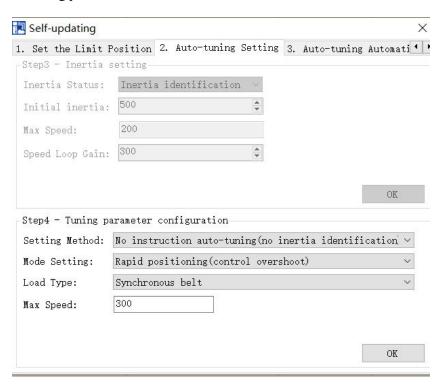
Error code	Meaning	Reasons	
Err-1	Failure to search for optimal gain	The inertia ratio is too large; Too weak rigidity of mechanism	
Err-2	①Overrun/alarm occurs during auto-tuning ②External instruction auto-tuning/Vibration suppression	Please make sure that there is no overrun and alarm before auto-tuning.	


	mode: servo shut down the enabler	during auto-tuning	
	during auto-tuning		
Err-3	Current non-position control mode	Please auto-tune in position mode	
Err-4	Unclosed adaptive function	Set P2-01.0 to 0 before auto-tuning	
Err-7	Driver alarm during auto-tuning	Driver alarmed	
Err-8	Positioning completion signal instability	Short instruction interval	

XinJe Servo software auto-tuning steps

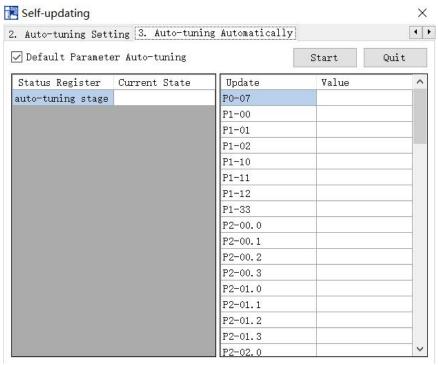

1. Click auto-tuning on the main interface of XinJeServo software


2. Select jog or manual setting to configure the trip of inertia identification.

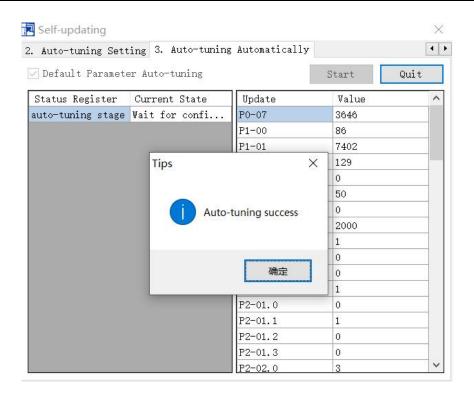

3. Set the auto-tuning interface

4. Click OK to start the inertia identification.

5. Configure the auto-tuning parameters



Auto-tuning mode	Description
Soft	Make a soft gain adjustment. Besides gain adjustment, notch filter is automatically adjusted.
Rapid positioning	Make special adjustment for positioning purpose. Besides gain adjustment, the model loop gain and notch filter are automatically adjusted.


Rapid	In the use of positioning, we should pay attention to adjusting without overshoot.
positioning	Besides gain adjustment, the model loop gain and notch filter are automatically
(control	adjusted.
overshoot)	

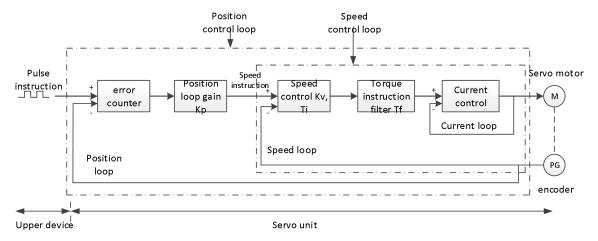
Load type	Description	
Synchronous belt	Adjustment of lower rigidity mechnaism such as synchronous belt.	
Screw	It is suitable for adjusting higher rigidity mechanism such as ball screw mechanism. If there is no corresponding mechanism, please choose this type.	
Rigid connection	It is suitable for the adjustment of rigid body system and other mechanisms with higher rigidity.	

6. Start auto-tuning automatically

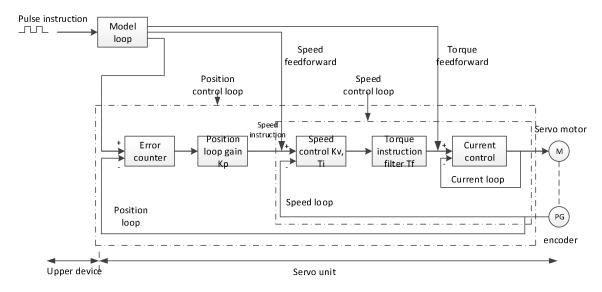
7. Auto-tuning is finished, click ok.

9.4.6 Related parameters

The following parameters may be modified during auto-tuning. Do not change them manually during auto-tuning.


Parameter	Name	Property	Effect of value on gain after setting
P0-07	First inertia ratio		
P1-00	First speed loop gain		
P1-01	Integral time constant of the first speed loop		
P1-02	First position loop gain		
P2-00.0	Disturbance observer switch		
P2-01.0	Adaptive mode switch		
P2-35	Torque command filter time constant 1		
P2-41	Disturbance observer gain		
P2-47.0	model loop switch		
P2-49	model loop gain		
P2-55	model speed feedforward gain		
P2-60.0	Active vibration suppression switch		
P2-61	Active vibration suppression frequency	Gain	
P2-62	Active vibration suppression gain	performance	Yes
P2-63	Active vibration suppression damping	parameters	ies
P2-64	Active vibration suppression filtering time 1		
P2-65	Active vibration suppression filter time 2		
P2-66	The second group of active vibration damping		
P2-67	The second group of active vibration suppression frequencies		
P2-69.0	First notch switch		
P2-69.1	Second notch switch		

Parameter	Name	Property	Effect of value on gain after setting
P2-71	First notch frequency		
P2-72	First notch attenuation		
P2-73	First notch band width		
P2-74	Second notch frequency		
P2-75	Second notch attenuation		
P2-76	Second notch band width		
P2-17	Inertia identification and internal instruction auto-tuning max speed		
P2-86	auto-tuning jog mode	Auto-tuning setting parameters	No
P2-87	auto-tuning min limit position		
P2-88	auto-tuning max limit position		
P2-89	auto-tuning max speed		
P2-90	auto-tuning acceleration/deceleration time		


Note: $P2-60\sim P2-63$ are automatically modified in auto-tuning process. Users are not allowed to modify them manually. Manual modification may lead to the risk of system runaway.

9.5 Manual adjustment

9.5.1 Overview

Position control loop diagram (shut down the model loop)

Position control loop diagram (turn on the model loop)

Servo unit consists of three feedback loops (current loop, speed loop and position loop) from inside to outside. The more inner loop, the more responsive it is. Failure to comply with this principle will result in poor response or vibration. Among them, the current loop parameters are fixed values to ensure adequate responsiveness, and users do not need to adjust.

Please use manual adjustment in the following occasions:

- When the expected effect can not be achieved by fast adjusting the gain
- When the expected effect is not achieved by automatically adjusting the gain

9.5.2 Adjustment steps

In position mode, if the soft mode (P2-02.0=1) is selected by auto-tuning, the function of model loop will be turned off; in speed mode, the gain of position loop will be invalid.

Increasing response time

- 1. Reducing the filter time constant of torque instruction (P2-35)
- 2. Increasing Speed Loop Gain (P1-00)
- 3. Reducing Integral Time Parameter of Speed Loop (P1-01)
- 4. Increasing the gain of position loop (P1-02)

5. Improving Model Loop Gain (P2-49)

Reduce response, prevent vibration and overshoot

- 1. Reduce the Speed Loop Gain (P1-00)
- 2. Increase Integral Time Constant of Speed Loop (P1-01)
- 3. Reduce the gain of position loop (P1-02)
- 4. Increase the filter time constant of the torque instruction (P2-35)
- 5. Reduce Model Loop Gain (P2-49)

9.5.3 Gain parameter for adjustment

The gain parameters that need to be adjusted:

P1-00 Speed loop gain

P1-01 Integral Time Constant of Speed Loop

P1-02 Position loop gain

P2-35 Torque instruction filter time constant

P2-49 Model loop gain

■ Speed loop gain

Because the response of the speed loop is low, it will become the delay factor of the outer position loop, so overshoot or vibration of the speed command will occur. Therefore, in the range of no vibration of mechanical system, the larger the setting value, the more stable the servo system and the better the responsiveness.

Parame ter	Name	Default setting	Unit	Range	Modificat ion	Effective
P1-00	Speed loop gain	200	0.1Hz	10~20000	Anytime	At once

■ Speed loop integration time constant

In order to respond to small inputs, the speed loop contains integral elements. Because this integral element is a delay element for the servo system, when the time constant is set too large, overshoot will occur, or the positioning time will be prolonged, resulting in poor responsiveness.

The gain of the speed loop and the integral time constant of the speed loop roughly meet the following relationship: $P1-00 \times P1-01 = 636620$.

Parame ter	Name	Default setting	Unit	Range	Modify	Effective
P1-01	Speed loop integration time constant	3300	0.01ms	15~51200	Anytime	At once

■ Position loop gain

When the model loop is invalid (P2-47.0=0), the responsiveness of the position loop of the servo unit is determined by the gain of the position loop. The higher the position loop gain is, the higher the responsiveness is and the shorter the positioning time is. Generally speaking, the gain of position loop cannot be increased beyond the natural vibration number of mechanical system. Therefore, in order to set the position loop gain to a larger value, it is necessary to improve the rigidity of the machine and increase the number of inherent vibration of the machine.

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P1-02	Position loop gain	200	0.1/s	10~20000	Anytime	At once

■ Torque command filtering time constant

When machine vibration may be caused by servo drive, it is possible to eliminate vibration by adjusting the filtering time parameters of the following torque instructions. The smaller the numerical value, the better the response control can be, but it is restricted by the machine conditions. When vibration occurs, the parameter is generally reduced, and the adjustment range is suggested to be 10-150.

Parameter	Name	Default	Unit	Range	Modify	Effective
1 001 001111 0 0 0 1	1 (01110	2 010.010	0 1111	11001180	1.10 0111	

		setting				
P2-35	Torque command filtering time constant	100	0.01ms	0~65535	Anytime	At once

■ Model loop gain

When the model loop is valid (P2-47.0=1), the response of the servo system is determined by the gain of the model loop. If the gain of the model loop is increased, the responsiveness is increased and the positioning time is shortened. At this time, the response of the servo system depends on this parameter, not P1-02 (position loop gain). The gain of the model loop is only valid in position mode.

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P2-49	Model loop gain	500	0.1Hz	10~20000	Anytime	At once

9.6 Adaptive

9.6.1 Overview

Adaptive function means that no matter what kind of machine and load fluctuation, it can obtain stable response through automatic adjustment. It starts to automatically adjust when servo is ON.

9.6.2 Notes

- When the servo unit is installed on the machine, it may produce instantaneous sound when the servo is ON. This is the sound when the automatic notch filter is set, not the fault. For the next time the servo is ON, no sound will be emitted.
- When the inertia of the motor exceeds the allowable load, the motor may produce vibration. At this time, please modify the adaptive parameters to match the present load inertia.
- ◆ In adaptive operation, in order to ensure safety, the adaptive function should be executed at any time when the servo enablement can be stopped or turned off urgently.

9.6.3 Operation steps

The factory settings are self-adaptive effective without modifying other parameters. The effectiveness of self-adaptation is controlled by the following parameters.

Par	Parameter Meaning		Default Modify setting		Effective
P2-01	n.□□□0	Adaptive shutdown	* 1	Servo bb	Re-power
P2-01	n.□□□1	Adaptive open	n.□□□l	Servo oo	on

9.6.4 Inertia mode and related parameters

The adaptive default parameter is defined as small inertia mode. If the load inertia far exceeds the allowable load inertia of the motor (such as 60 times inertia of the 60 motor), the adaptive large inertia mode can be turned on.

Par	rameter	Meaning	Default setting	Modify	Effective
P2-03	n.0□□□	Adaptive small inertia mode	n.0□□□	Servo bb	Do mayyan an
F2-03	n.1□□□	Adaptive large inertia mode	II.U	Servo do	Re-power on

Parameter	Meaning	Default setting	Modify	Effective
P2-05	Adaptive speed loop gain	400 ^{Note 1}	Servo bb	Re-power on
P2-10	Adaptive speed loop integral	500	Servo bb	Re-power on
P2-11	Adaptive position loop gain	100	Servo bb	Re-power on
P2-07	Adaptive inertia ratio	0	Servo bb	Re-power on

P2-08	Adaptive speed observer gain	60	Servo bb	Re-power on
P2-12	Adaptive stable max inertia ratio	30	Servo bb	Re-power on
P2-16	Adaptive motor rotor inertia coefficient	100	Servo bb	Re-power on
P2-19	Adaptive bandwidth	50 ^{Note 2}	Anytime	At once
P6-05	Adaptive large inertia mode speed loop gain	200	Servo bb	Re-power on
P6-07	Adaptive large inertia mode inertia ratio	50	Servo bb	Re-power on
P6-08	P6-08 Adaptive large inertia mode speed observer gain		Servo bb	Re-power on
P6-12	Adaptive large inertia mode max inertia ratio	50	Servo bb	Re-power on

Note 1: The default value of 750W and below DS5 series servo is 400. The default value of other power is 200. **Note 2:** The default value of 400W and below DS5 series servo drivers is 70; The default value of other power is 50.

9.6.5 Recommended inertia ratio parameters

Under the adaptive default parameters, the load can only run steadily under a certain moment of inertia. If the load inertia is large, some parameters need to be adjusted. The recommended parameters are as follows (the parameters are modified under the default parameters).

Motor flange	Inertia	Parameter						
	Within 20 times inertia	Adaptive small inertia mode(default parameters)						
	20~30 times inertia	Set P2-08=50, P2-12=40						
40~90	30∼40 times inertia	Set P2-08=50, P2-12=40, P2-07=10						
flange	40∼50 times inertia	Set P2-08=50, P2-12=40, P2-07=30						
	50~80 times inertia	Switch to adaptive large inertia mode or set P2-08=40,P2-12=50,P2-07=50						
	Within 10 times inertia	Adaptive small inertia mode (default parameters)						
110, 130	$10\sim15$ times inertia	Set P2-08=50, P2-12=40						
flange	15~20 times inertia	Switch to adaptive large inertia mode or set P2-08=40, P2-12=50, P2-07=50						
100 1	Within 5 times inertia	Adaptive small inertia mode (default parameters)						
180 and above	$5\sim10$ times inertia	Set P2-08=50, P2-12=40						
flange	10∼20 times inertia	Switch to adaptive large inertia mode or set P2-08=40, P2-12=50, P2-07=50						

Note: The large inertia parameters can still drive a smaller inertia load. For example, when the parameters of 50 times inertia are used in the mechanism of 20 times inertia, only the response will become worse.

9.6.6 Adaptive parameter effect

Parameter small /large inertia	Name	Default value	Range	Effect
P2-05/P6-05	Adaptive speed loop gain	400/200	200~400	Decreasing can improve the inertia capacity, but will reduce the responsiveness, which has a great impact on the responsiveness
P2-07/P6-07	Adaptive load inertia ratio	0/50	0~200	Increase can greatly improve the inertia capacity, and will not affect the responsiveness. Too large will cause oscillation
P2-08/P6-08	Speed observer gain	60/40	30~60	Decreasing P2-08 and increasing P2-12 can greatly improve the inertia capability,
P2-12/P6-12	Adaptive stable max inertia ratio	30/50	30~60	but will reduce the responsiveness, which has a great impact on the responsiveness

P2-10	Adaptive speed loop integral time coefficient	500	200~larger	Adjust according to need, generally increase
P2-11	Adaptive position loop gain coefficient	100	50~200	Adjust according to the need, increasing will make the response fast, reducing will make the response slow
P2-16	Adaptive motor rotor inertia coefficient	100	100~200	Increasing can improve the servo rigidity, enhance the anti-interference ability, and solve the running jitter
P2-19	Adaptive bandwidth	50~70	40~80	Increasing will slightly improve the inertia capacity of the belt, which has little impact on the responsiveness, as an auxiliary parameter

9.6.7 Invalid parameters when adaptive effective

When the adaptive function is effective (P2-01.0=1), the invalid parameters are shown as below:

Item	Parameters	Name
	P1-00	First speed loop gain
	P1-05	Second speed loop gain
	P1-01	First speed loop integral time constant
	P1-06	Second speed loop integral time constant
Gain	P1-02	First position loop gain
Gain	P1-07	Second position loop gain
	P2-49	Model loop gain
	P0-07	First inertia ratio
	P0-08	Second inertia ratio
	P5-36	/I-SEL inertia ratio switch

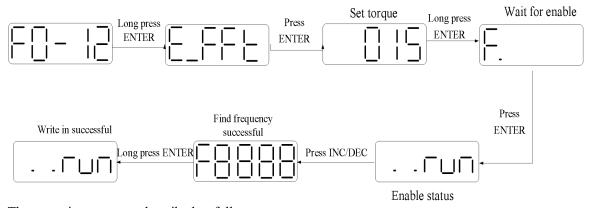
9.7 Vibration suppression

9.7.1 Overview

The mechanical system has a certain resonance frequency. When the servo gain is increased, the continuous vibration may occur near the resonance frequency of the mechanical system. Generally in the range of 400Hz to 1000Hz, it caused the gain can not continue to increase. Vibration can be eliminated by automatically detecting or manually setting the vibration frequency. After the vibration is eliminated, if the responsiveness needs to be improved, the gain can be further improved.

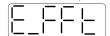
Note:

- (1) Servo responsiveness will change after vibration suppression operation.
- (2) Please set the inertia ratio and gain parameters correctly before performing the vibration suppression operation, otherwise it can not be controlled properly.


9.7.2 Operation tools

Adjustment mode	Operation tools	Control mode	Operation steps	Limitation
Adaptive mode	XinJeServo Mechanical Characteristic Analysis		9.7.4Vibration Suppression (PC Software)	All software versions support
Auto-tuning	Panel vibration suppression	Position	9.7.3 Vibration Suppression (fast FFT)	None
mode	XinJeServo Mechanical Characteristic Analysis	mode	9.7.4 Vibration Suppression (PC Software)	All software versions support
Auto-tuning /adaptive mode	Panel vibration suppression		9.7.3 Vibration suppression (fast FFT)	None

9.7.3 Vibration suppression (fast FFT)

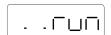

The function can analyze the mechanical characteristics through the parameter F0-12 on the servo operate panel, find out the mechanical resonance frequency and realize the vibration suppression.

The complete operation process is shown in the figure below:

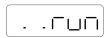
The operation steps are described as follows:

1. F0-12, long press [ENTER] to enter quick FFT function, it will show "E FFt".

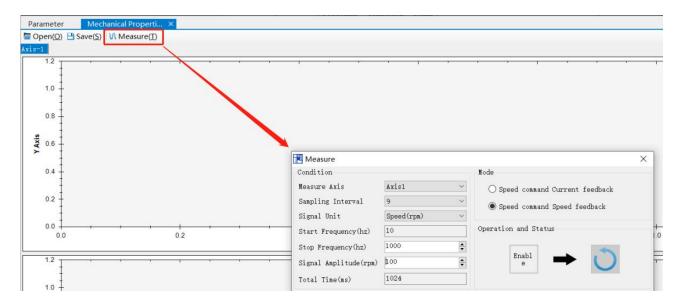
2. Press 【ENT】 to enter torque setting interface, it will show the current setting torque, which is the value of P6-89. Press 【▲】, 【▼】 to increase or decrease torque command. When increasing the torque command, it is

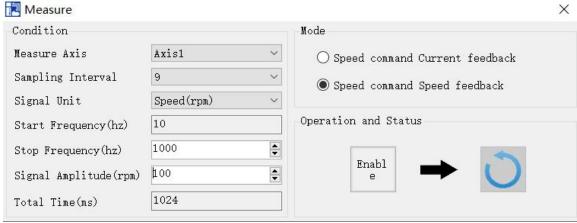

recommended to increase it a little bit to avoid severe vibration of the equipment.

3. After setting the torque command, long press **[**ENT**]**, enter "read to enable" status, it will show 'F".

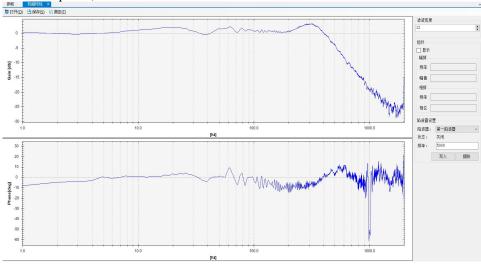


4. Press 【ENT】, enable, it will show "..run".


5. Press 【▲】,【▼】 to run forward or reverse and find the resonance frequency. "E_FFt" will shining on the panel when operation. If the resonance frequency is found, it will show "Fxxxx", "xxxx" is the resonance frequency. If failed, it will show "F----".



Note: for above each step, press STA/ESC can return to the last step, press STA to exit.

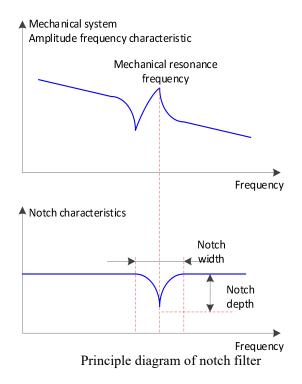

- 9.7.4 Vibration suppression (PC software)
- 1. Open XinJeServo software, click mechanical properties.
- 2. Click measure

3.Set the measure conditions, then click execute;

1. Select amplitude and phase;

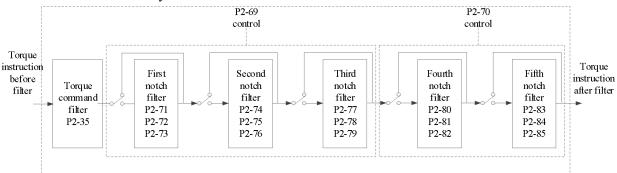
- 2. Set the filter width (to see resonance frequencies clearly), find the resonance frequency;
- 3. Notch parameters need to be set manually. Refer to 9.7.6 notch filter for details.

As an example, through the analysis of mechanical characteristics, the resonance frequency is 328 Hz, and the third notch filter can be used. The parameters are as follows: P2-69 = n.1000, P2-77 = 328


Note: In both adaptive and auto-tuning modes, if mechanical characteristic analysis is used, the notch can be set manually. If there are multiple resonance points, the third to fifth notch can be configured in turn.

9.7.5 Vibration suppression(manual setting)

If the resonance frequency of the mechanical system is known, the vibration can be eliminated by setting the vibration frequency manually. Please configure the third to fifth notches. The related parameters are detailed in 9.7.6 notch filter.


9.7.6 Notch filter

Notch filter can suppress mechanical resonance by reducing the gain at a specific frequency. After the notch filter is set correctly, the vibration can be effectively suppressed and the servo gain can be continuously increased. The principle diagram of notch filter is as follows:

The servo driver has five sets of notch filters, each with three parameters, notch frequency, notch attenuation and notch bandwidth. The first and second notches are set automatically, and the third, fourth and fifth are set manually.

The torque instruction filter and notch filter are in series in the system. As shown in the figure below, the switch of the notch filter is controlled by P2-69 and P2-70.

Parameter		Meaning	Default setting	Modify	Effective
	n.□□□0	First notch off	n.□□□0	Anytima	At once
	n1	First notch on	n.⊔⊔⊔U	Anytime	At once
P2-69	n.□□0□	Second notch off	. ==0=	A mystime o	At once
P2-09	n1_	Second notch on	n.□□0□	Anytime	
	n.0□□□	Third notch off	. 0===	Anytime	At once
	n.1000	Third notch on	n.0□□□		
	n.□□□0	Fourth notch off	0	A	A .
D2 70	n1	Fourth notch on	n.□□□0	Anytime	At once
P2-70	n.□□0□	Fifth notch off	. ==0=	A mystime o	At once
	n1_	Fifth notch on	n.□□0□	Anytime	

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P2-71	First notch frequency	5000	Hz	50~5000	Anytime	At once
P2-72	First notch attenuation	70	0.1dB	50~1000	Anytime	At once
P2-73	First notch bandwidth	0	Hz	0~1000	Anytime	At once
P2-74	Second notch frequency	5000	Hz	50~5000	Anytime	At once
P2-75	Second notch attenuation	70	0.1dB	50~1000	Anytime	At once
P2-76	Second notch bandwidth	0	Hz	0~1000	Anytime	At once
P2-77	Third notch frequency	5000	Hz	50~5000	Anytime	At once
P2-78	Third notch attenuation	70	0.1dB	50~1000	Anytime	At once
P2-79	Third notch bandwidth	0	Hz	0~1000	Anytime	At once
P2-80	Fourth notch frequency	5000	Hz	50~5000	Anytime	At once
P2-81	Fourth notch attenuation	70	0.1dB	50~1000	Anytime	At once
P2-82	Fourth notch bandwidth	0	Hz	0~1000	Anytime	At once
P2-83	Fifth notch frequency	5000	Hz	50~5000	Anytime	At once
P2-84	Fifth notch attenuation	70	0.1dB	50~1000	Anytime	At once
P2-85	Fifth notch bandwidth	0	Hz	0~1000	Anytime	At once

Note:

- 1. In the adaptive mode, if the vibration is detected, the second notch filter will be automatically configured.
- 2. In the auto-tuning mode, the second and first notches will be automatically configured if the vibration is detected (the second notches will be preferentially opened when there is only one vibration point).
- 3. Whether in self-adaptive or auto-tuning mode, if the mechanical characteristic analysis is sued, it belongs to manual setting of notches, please configure the third to fifth notches.

9.8 Gain adjustment application

9.8.1 Model loop control

In the self-tuning mode, in addition to the gain of speed loop and position loop, there is also the gain of model loop, which has a great influence on the servo response. When the model loop is not open, the servo responsiveness is determined by the position loop gain. When the model ring is open, the servo responsiveness is determined by the model loop gain. The model loop is equivalent to the feedforward function in the driver control loop.

When the self-tuning mode is soft, the model loop function will be automatically off. When the self-tuning mode selects fast positioning or fast positioning (control overshoot), the model loop function will be automatically turned on.

Self-tuning mode

Parameter		Meaning	Defult setting	Modify	Effective
	n.□□□1	Soft		Anytime	Atomos
P2-02	n.□□□2	Fast positioning	2		
P2-02	n.□□□3	Quick positioning (control	n.□□□3 Anytime		At once
		overshoot)			

Selection of self-tuning mode:

(1) Soft(P2-02.0=1)

This mode does not turn on the gain of the model loop, and the operation is soft. It is suitable for occasions with insufficient mechanical rigidity and low response requirements.

(2) Quick positioning (P2-02.0 = 2)

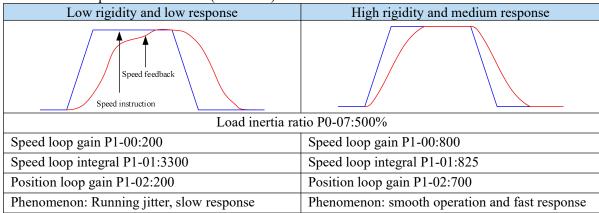
This method has the fastest response to setting parameters, but has no special suppression on overshoot.

(3) Quick positioning (control overshoot) (P2-02.0 = 3):

In this way, the setting parameter response is fast, which will inhibit the overshoot.

Load type	Explanation		
Synchronous	The adjustment is suitable for the mechanism with lower rigidity such as		
belt synchronous belt mechanism.			
Lead screw	It is suitable for the adjustment of high rigidity mechanism such as ball screw		
Lead Screw	mechanism. Please select this type when there is no corresponding structure.		
Rigid	The adjustment is suitable for rigid body system and other mechanisms with high		
connection	rigidity.		

Self-tuning	Explanation
mode	
Soft	Soft gain adjustment. In addition to gain adjustment, the notch filter is also adjusted Automatically.
Fast	Make special adjustment for positioning purpose. In addition to gain adjustment, the
positioning	model loop gain and notch filter are also adjusted automatically
Fast	Pay attention to the adjustment of no overshoot in the positioning purpose. In
positioning	addition to gain adjustment, the model loop gain and notch filter are also adjusted
(control	automatically.
overshoot)	


Parameter Meaning		Meaning	Default setting	Modify	Effective
	n.□□□1	Soft			
P2-02	n.□□□2	Fast positioning	n.□□□3	Anytime	At once
	n.□□□3	Fast positioning(control overshoot)			

Model loop function

Par	Parameter Meaning		Default setting	Modify	Effective
D2 47	n.□□□0	Model loop turn off		Anytima	Atomos
P2-47 n. \square Model loop turn on		n.□□□0	Anytime	At once	

Taking DS5 series servo auto-tuning mode and using 750W servo 5 times load inertia as an example:

■ Model loop function turns off (soft mode)

Model loop function turns on (fast positioning or fast position(control overshoot)) Low rigidity and low response High rigidity and low response High rigidity and high response Speed Speed instruction Load inertia ratio P0-07:500% Speed loop gain P1-00:200 Speed loop gain P1-00:800 Speed loop gain P1-00:800 Speed loop integral P1-01:3300 Speed loop integral P1-01:825 Speed loop integral P1-01:825 Position loop gain P1-02:200 Position loop gain P1-02:700 Position loop gain P1-02:700 Model loop gain P2-49:300 Model loop gain P2-49:300 Model loop gain P2-49:4000

Phenomenon: smooth operation

Phenomenon: smooth operation

And fast response

Note: The above curves only show the effect of the parameters, not the real running curves.

and slow response

9.8.2 Torque disturbance observation

Phenomenon:

slow response

Running jitter,

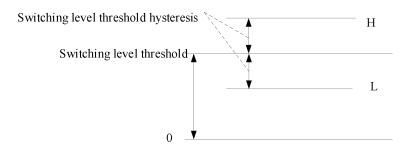
Disturbance observer can reduce the influence of external disturbance on servo system and improve the anti-disturbance ability by detecting and estimating the external disturbance torque of the system and compensating the torque command.

If the soft mode is selected in the auto-tuning mode, the disturbance observer will be closed automatically, and the gain of the disturbance observer will not change. If the fast positioning or fast positioning (control overshoot) is selected, the disturbance observer will be opened automatically, and the gain of the disturbance observer will be modified to 85. The relevant parameters of this function no need to be set manually by users.

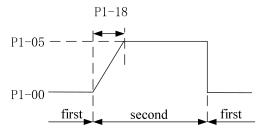
Pa	Parameter Meaning		Default setting	Modify	Effective
P2-00	n.□□□0	Turn off disturbance observer	" ===0	Servo bb	At once
P2-00	n.□□□1	Turn on disturbance observer	n.□□□0	Servo bb	At once

Parameter	Meaning	Default setting	Unit	Setting range	Modify	Effective
P2-41	Disturbance observer gain	85	%	0~100	Anytime	At once

9.8.3 Gain adjust parameters


Parameter	Meaning	Default setting	Unit	Setting range	Modify	Effective
P1-00	First speed loop gain	<=20P7:300 >=21P0:200	0.1Hz	10~20000	Servo bb	At once
P1-01	Integral time constant of the first velocity loop	<=20P7:2122 >=21P0:3183	0.01ms	15~51200	Servo bb	At once
P1-02	First position loop gain	<=20P7:300 >=21P0:200	0.1/s	10~20000	Servo bb	At once
P1-05	Second speed loop gain	200	0.1Hz	10~20000	Servo bb	At once
P1-06	Second velocity loop integral constant	3300	0.01ms	15~51200	Servo bb	At once
P1-07	Second position loop gain	200	0.1/s	10~20000	Servo bb	At once

9.8.4 Gain switch


Par	ameter	Meaning	Default setting	Modify	Effective
	n.==0	0-SI terminal switching gain is valid(the gain switching condition parameter is not valid) 1-Perform gain switching according to gain switching conditions 2-Reserved			
P1-14	n.0001	n.□□X□: Gain switching condition selection 0- First gain fixed 1- Switching by external SI terminals 2- Large torque command 3- Large speed command 4 - Speed command changes greatly 5 - [Reserved] 6 - Large position deviation 7 - Position command 8 - Positioning completed 9 - Large actual speed A - Position command + actual speed	0	Servo bb	At once
P1-15		Gain switching waiting time	5	Servo bb	At once
P1-16		Gain switching level threshold	50	Servo bb	At once
P1-17		Hysteresis of gain switching level threshold	30	Servo bb	At once
P1-18		Position loop gain switching time	2	Servo bb	At once

Note:

- (1) The gain switching waiting time is effective only when the second gain is switched back to the first gain.
- (2) The definition of gain switching level threshold hysteresis:

(3) The definition of position gain switching time:

(4) Gain switching conditions:

	(1) Guill BWIN	oning conditions.				
Gain switching condition				Related parameters		
P1- 14.1	Condition	Diagram	Notes	P1-15	P1-16	P1-17

		Gain switching condition		Re	lated parame	ters
0	The first gain fixed	-	-	Invalid	Invalid	Invalid
1	Terminal switching	Terminal signal ON Waiting time OFF	Switch the gain through G-SEL signal: G-SEL invalid, first group of gain, G-SEL valid, second group of gain	Valid	Invalid	Invalid
2	Torque command	Actual speed Waiting Hysteresis Torque command time. Hysteresis Hysteresis Hysteresis First second first second first	When the absolute value of torque command exceeds (level + hysteresis) [%] at the last first gain, switch to the second gain. At the last second gain, the absolute value of the torque command is less than (level - hysteresis) [%], and then wait until P1-15 remain in this state, return to the first gain.	Valid	Valid (%)	Valid (%)
3	Speed command	Speed command Waiting time Hysteres is level first second first	When the absolute value of the speed command exceeds (level + hysteresis) [RPM] at the last first gain, switch to the second gain. At the last second gain, when the absolute value of the speed command is less than (level - hysteresis) [RPM], wait until P1-15 remain in this state, and return to the first gain.	Valid	Valid	Valid
4	Speed command change rate	Actual speed Waiting Hysteresis Speed command change rate level Hystersin Hystersin First second Waiting Hystersin Hystersin First second First second Hystersin	At the last first gain, when the absolute value of the speed command change rate exceeds (level + hysteresis) [10rpm/s], switch to the second gain. At the last second gain, when the absolute value of the speed command change rate is less than (level-hysteresis) [10rpm/s], wait until P1-15 remain in this state, and return to the first gain.	Valid	Valid (10rpm/s)	Valid (10rpm /s)
5	Speed command high and low speed threshold [not supported]	Speed command Hysteres is level Excessive gain first second	At the last first gain, when the absolute value of the speed command exceeds (level-hysteresis) [RPM], switch to the second gain, and the gain gradually changes. When the absolute value of the speed command reaches (level + hysteresis) [RPM], the gain completely changes to the second gain.	Invalid	Valid (rpm)	Valid (rpm)

At the last second gain, when the absolute value of the speed command is lower than (level + hysteresis) [RPM], it starts to return to the first gain, and the gain changes gradually. When the absolute value of the speed command reaches (level-hysteresis) [RPM], the gain completely returns to the first gain. Valid only in position mode (other modes are fixed as the first gain). When the absolute value of position deviation exceeds (level-hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain, if the position command is not	Valid (Encod er unit)
the speed command is lower than (level + hysteresis) [RPM], it starts to return to the first gain, and the gain changes gradually. When the absolute value of the speed command reaches (level-hysteresis) [RPM], the gain completely returns to the first gain. Valid only in position mode (other modes are fixed as the first gain) When the absolute value of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain, if the position command is not return to the first gain.	(Encod
lower than (level + hysteresis) [RPM], it starts to return to the first gain, and the gain changes gradually. When the absolute value of the speed command reaches (level-hysteresis) [RPM], the gain completely returns to the first gain. Valid only in position mode (other modes are fixed as the first gain) When the absolute value of position deviation exceeds (level-hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain). At the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain, if the position command is not the last first gain and the gain changes gradually. When the absolute value of position deviation is less than (level-hysteresis) [encoder unit] at the last first gain and the gain command is not the last first gain and the gain command is not the last first gain.	(Encod
hysteresis) [RPM], it starts to return to the first gain, and the gain changes gradually. When the absolute value of the speed command reaches (level-hysteresis) [RPM], the gain completely returns to the first gain. Valid only in position mode (other modes are fixed as the first gain) When the absolute value of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until Pl-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain. Valid only in position mode (other modes are fixed as the first gain. Valid only in position mode (other modes are fixed as the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position experted as the first gain. At the last first gain, if the position experted as the first gain, if the position experted as the first gain.	(Encod
to return to the first gain, and the gain changes gradually. When the absolute value of the speed command reaches (level-hysteresis) (RPM], the gain completely returns to the first gain. Valid only in position mode (other modes are fixed as the first gain) When the absolute value of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, switch to the second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position expectation of the p	(Encod
and the gain changes gradually. When the absolute value of the speed command reaches (level-hysteresis) [RPM], the gain completely returns to the first gain. Valid only in position mode (other modes are fixed as the first gain) when the absolute value of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain. Valid only in position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not getting command is not greatly and the property of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain.	(Encod
gradually. When the absolute value of the speed command reaches (level-hysteresis) [RPM], the gain completely returns to the first gain. Valid only in position mode (other modes are fixed as the first gain) when the absolute value of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain). Valid only in position mode (other modes are fixed as the first gain). At the last first gain, if the position ecommand is not position command is not position.	(Encod
absolute value of the speed command reaches (level-hysteresis) [RPM], the gain completely returns to the first gain. Valid only in position mode (other modes are fixed as the first gain) When the absolute value of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain). Valid only in position mode (other modes are fixed as the first gain). At the last first gain, if the position command is not at the last first gain.	(Encod
Command reaches (level-hysteresis) [RPM], the gain completely returns to the first gain. Valid only in position mode (other modes are fixed as the first gain) When the absolute value of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not	(Encod
Regain completely returns to the first gain. Valid only in position mode (other modes are fixed as the first gain). Waiting (level + hysteresis) [encoder unit] at the last second gain. When the absolute value of position deviation is less than (level-hysteresis) [encoder unit] at the last second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not the position position position position position position mode (other modes are fixed as the first gain).	(Encod
the gain completely returns to the first gain. Valid only in position mode (other modes are fixed as the first gain) When the absolute value of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain, if the position command at the last first gain, if the position command is not the second gain.	(Encod
to the first gain. Valid only in position mode (other modes are fixed as the first gain) When the absolute value of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain, if the position command is not the posi	(Encod
Position offset Positi	(Encod
Position offset Null offset Valid (Encoder unit) at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not be position of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, which is the position of position of position deviation exceeds (level + hysteresis) [encoder unit] at the last second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position of position of position of position of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, which to the second gain. Valid (Encoder unit) of the position of the position of the position of	(Encod
fixed as the first gain) When the absolute value of position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain, if the position command is not pos	(Encod
Position offset Position deviation exceeds (level + hysteresis) [encoder unit] at the last first gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not position exceeds (level + hysteresis) [encoder unit] at the last first gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not position of the position exceeds (level + hysteresis) [encoder unit] at the last first gain.	(Encod
Position offset Positi	(Encod
Position offset Positi	(Encod
Position offset First gain, switch to the second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain. When the absolute value of the position deviation is less than (level-hysteresis) Position offset Valid (Encoder unit) offset Valid (Encoder unit) of the position deviation is less than (level-hysteresis) Position offset Valid (Encoder unit) of the position deviation is less than (level-hysteresis) Position offset Valid (Encoder unit) of the position deviation is less than (level-hysteresis) Position offset Valid (Encoder unit) of the position deviation is less than (level-hysteresis) Position offset Valid (Encoder unit) of the position deviation is less than (level-hysteresis) Position offset Valid (Encoder unit) of the position deviation is less than (level-hysteresis) Position offset Valid (Encoder unit) of the position deviation is less than (level-hysteresis) Position offset Position offset Position offset Position offset National offset Valid (Encoder unit) of the position deviation is less than (level-hysteresis) Position offset Position	(Encod
offset second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not	(Encod
offset second gain. When the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not	
when the absolute value of the position deviation is less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not	er unit)
less than (level-hysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not	
less than (level-nysteresis) [encoder unit] at the last second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not	
second gain, wait until P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not	
P1-15 remain in this state, and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not	
and return to the first gain. Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not	I
Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not	
mode (other modes are fixed as the first gain) At the last first gain, if the position command is not	
Position command At the last first gain, if the position command is not	
At the last first gain, if the position command is not	
position command is not	
Waiting position command is not	
waiting 0	
7 Position gain. Valid Invalid	Invalid
command At the last second gain, if	Ilivalia
the position command is	
first second first in the state of 0 which	
remains in the waiting	
time P1-15, it returns to	
the first gain.	
Valid only in position	
mode (other modes are	
fixed as the first gain)	
At the last first gain, if the	
Position positioning is not	
command waiting completed, switch to the	
second gain.	
At the last second gain, if	
8 Positioning completion Positioning I the state of positioning Valid Invalid	Invalid
completion remains in	
this state for the waiting	
first second first time P1-15, the first gain	
is returned. Note: it is	
necessary to set the	1
positioning completion	
detection mode according	
to P5-01.	

		Gain switching condition		Re	lated parame	ters
9	Actual speed	Threshold feedback Waiting hysteresis Level threshold first second first	Valid only in position mode (other modes are fixed as the first gain): At the last first gain, the absolute value of the actual speed exceeds (level + hysteresis) [RPM], switching to the second gain. At the last second gain, when the absolute value of the inter speed is less than (level-hysteresis) [RPM], wait until P1-15 remain in this state, and return to the first gain.	Valid	Valid (rpm)	Valid (rpm)
A	Position command+ actual speed	Command duration delay time First gain when static Second gain when static when action when stable Actual speed < (switching levelswitching delay) Actual speed < Switching level Switching delay) Near rest only speed integral second gain/ Other first gain	Valid only in position mode (other modes are fixed as the first gain): At the last first gain, if the position command is not 0, switch to the second gain. At the last second gain, the state in which the position command is 0 within the waiting time P1-15, maintains the second gain. When the position command is 0 and the waiting time P1-15 reached, if the absolute value of the actual speed is less than (level) [RPM], the speed integral time constant is fixed at the second speed loop integral time constant (P1-07), and the others return to the first gain. If the absolute value of the actual speed is less than (level-hysteresis) [RPM], the speed integral also returns to the integral time constant of the first speed loop (P1-02).	Valid	Valid (rpm)	Valid (rpm)

9.8.5 Speed loop P-PI mode switching

(1) Speed control mode switching

	ameter	Meaning Default setting Modify Effect			Effective
n.==0 P1-26		1: Switching condition based on internal torque command 2: Switching condition based on speed command 3: Switching condition based on acceleration 4: Switching condition based on position deviation	<=22P6: 1 Others: 0	Servo bb	At once
	n.□□0□	0: Clear the integral of 0asr 1: Keep the speed loop integral unchanged and no longer accumulate	1		
P1-27		Mode Switching - Torque command threshold	200	Servo bb	At once
P1-28		Mode Switching - Speed command threshold	0	Servo bb	At once
P1-29		Mode Switching - Acceleration threshold	0	Servo bb	At once
P1-30		Mode switching - Position deviation threshold	0	Servo bb	At once

For power ranges of 22P6 and below, Asr P/PI mode switching is enabled by default, i.e. P1-26.0=1, and Asr P/PI mode switching is performed based on P1-27 torque command exceeding 200%.

(2) IP control selection

Parameter		Meaning	Default setting	Modify	Effective
P2-03	n.=0==	0: PI control 1: IP control	0	Servo bb	At once
P1-31		I-P control switching threshold	100	Servo bb	At once

Note: P1-31=0, the speed loop is equivalent to PI control; P1-31=100, the speed loop is equivalent to IP control.

9.9 Gain adjustment

9.9.1 Load shaking

The following reasons cause load to shake

1. The instruction is not smooth enough when the load inertia is too large.

Solutions:

- (1) Use position instruction smoothing filter P1-25;
- (2) Optimizing the instructions of the upper device to reduce the acceleration of the instructions;
- (3) Replace the motor with greater inertia.
- 2. Servo gain is too small, resulting in insufficient rigidity Solutions:
- (1) Increase the gain parameters and rigidity to enhance the anti-disturbance ability.
- 3. Insufficient rigidity of mechanism and equipment sloshing

Solutions:

- (1) Reducing gain parameters;
- (2) Optimize the instructions of the upper device and reduce the acceleration of the instructions.

9.9.2 Vibration

The following causes cause machine vibration:

(1) Vibration due to inappropriate servo gain

Solutions: Reduce gain

(2) Mechanical resonance point

Solutions: Setting notch parameters manually or through mechanical characteristic analysis

9.9.3 Noise

In adaptive mode:

(1) Inappropriate servo gain

Solutions: Reduce the adaptive control bandwidth (P2-19).

In auto-tuning mode:

(1) Inappropriate servo gain

Solutions: Under the mode of rapid adjustment, reduce the rigidity level.

Automatic Adjustment Mode: Reducing Model Loop Gain P2-49

(1) Noise due to mechanical resonance

Solutions: Refer to 9.9.2 vibration.

10 Alarm

10.1 EtherCAT related communication alarm code

Alarm code		Reasons	Solution
E-800	Inaccurate ESM demand error protection	The change state demand which cannot change from the present state was received. Init→Safeop Init→OP PreOP→OP	Check the change state request of host controller. The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
		 When the present state is other then OP: It remains in the present ESM state. When the present state is OP: SafeOP ESC register AL Status Code:0011h 	
E-801	ESM undefined request error protection	The change state request which does not have a definition (except the following) was received. 1:Request Init State 2:Request Pre-Operational State 3:Request Bootstrap State 4:Reauest Safe-operational State	Check the change state request of host controller. The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
		8:Request Operational State - When the present state is other then OP: It remains in the present ESM state When the present state is OP: SafeOP ESC register AL Status Code:0012h	
E-802	Bootstrap requests error protection *1)	The following change state request was received. 3:Request Bootstrap State ESM state after alarm: Init ESC register AL Status Code:0013h	Check the change state request of host controller. The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
E-803	Incomplete PLL error protection	Phasing servo and communication(PLL lock) could not be completed even after the lapse of 1s after the start of the synchronization process. ESM state after alarm:PreOP ESC register AL Status Code:002Dh	- Check setting of DC modeCheck whether propagation delay compensation or drift compensation is correct. The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
E-804	PDO watchdog error protection	Bit10 of AL Event Request(0220h) did not turn on within the time set by the ESC register addresses 0400h(Watchdog Divider) and 0420h (Watchdog Time Process Data) during PDO communication (SafeOP or OP). ESM state after alarm: Safe OP ESC register AL Status Code:001Bh PDO communication disconnection	1. Check whether the transmitting timing of PDO from host controller is constant(not stop). 2. Check whether the PDO watchdog detection delay value is too large; 3. Check whether there is a problem with the wiring of the EtherCAT communication cable and whether there is excessive noise on the cable. Replace the high-quality network cable; 4. The communication cable is reconnected, and the network cable is suspended and separated from the

Alarm		Reasons	Solution
			power cable; 5. Turn off the interfering equipment such as welding machine and then run it again, To eliminate interference problems; Cross test to determine the fault point; The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
E-806	PLL error protection	Servo phasing and communication(PLL lock) separated during operation in the state of SafeOP or OP. ESM state after alarm: SafeOP ESC register AL Status Code:0032h	- Check setting of DC mode Check whether propagation delay compensation or drift compensation is correct. The alarm can be cleared through the servo panel F0-00=1 or the control power can be disconnected for reset.
E-807	Synchronization signal error protection	After the synchronization processing is completed, the SYNC0 or IRQ interrupt processing occurs above the set threshold ESM state after alarm:SafeOP ESC register AL Status Code:002Ch	- Check setting of DC mode Check whether propagation delay compensation or drift compensation is correct. The alarm can be cleared through the servo panel F0-00=1 or the control power can be disconnected for reset.
E-810	Synchronization cycle error protection	If set to cycle synchronization(SYNC0 cycle) is not supported Set synchronization cycle except 500us,1ms, 2ms, 4ms ESM state after alarm: PreOP ESC register AL Status Code: 0035h	Set up a synchronous period correctly. The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.(Supported after 3770)
E-811	Mailbox error protection	A setup of SM0/1 was set as the unjust value. The sending and receiving area of the mailbox overlaps with SM2/3, and the address of the sending and receiving area is odd; Start address of mailbox: SyncManager0:1000h~10FFh, SyncManager1:other than 1200h~12FFh Length (ESC register:0802h, 0803h/080Ah, 080Bh) set up of SyncManager0/1 is inaccurate SyncManager0:other than 32~256byte SyncManager1:other than 40~256byte Control Register(ESC register:0804h/080Ch) set up of SyncManager0/1is inaccurate Set code other than 0110b in 0804h: bit5-0 Set code other than 0110b in 080Ch:bit5-0 ESM state after alarm: Init ESC register AL Status Code:0016h	Set the Sync manager correctly in accordance with the ESI file descriptions. The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
E-814	PDO watchdog error protection	A setup of the watchdog timer of PDO is wrong.	Set up detection timeout value of watchdog timer correctly

Alarm code		Reasons	Solution
		Although PDO watch dog trigger is effective (SyncManager: Bit6 which is the register 0804h set to 1), when the detection timeout value of PDO watchdog timer cycle setup (registers 0400h and 0420h) was less than "communication cycle *2". ESM state after alarm: PreOP ESC register AL Status Code:001Fh	The servo alarm can be cleared by setting SM2013+20* (N-1) or by servo panel F0-00=1.
E-815	DC error protection	DC setting is wrong. A value other than the following was set to bit 2-0 of 0981h (Activation) of the ESC register: bit2-0=000b; bit2-0=011b ESM state after alarm: PreOP ESC register AL Status Code:0030h	Check setting of DC mode. The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
E-816	SM event mode error protection	SM event mode which is not supported was set up. 1C32/1C33-01 Set values other than 00, 01 and 02 When 000b was set to bit 2-0 of 0981h of the ESC register, SM2 setting was set to only either 1C32h-01h or 1C33h-01h. ESM state after alarm:PreOP ESC register AL Status Code:0028h	- 1C32h-01h(Sync mode) should set up 00h(FreeRun), 01h(SM2), or 02h(DC SYNC0) 1C33h-01h(Sync mode) should set up 00h(FreeRun), 02h(DC SYNC0), or 22h (SM2) Set same value to 1C32h-01h and 1C33h-01h. The servo alarm can be cleared by setting SM2013+20*(N-1) or by servo panel F0-00=1.
E-817	SyncManager2/3 error protection	A setup of SyncManager3 was set as the unjust value. A Physical Start Address (ESC register 0818h) setup of SyncManager3 is inaccurate. Receiving area overlaps with the area for the transmission. The area for transmission/reception of Mailbox overlaps the area for transmission/reception of SyncManager2/3 Addressing transmission and reception area is an odd number. Start addresses is out of range. A Length (ESC register 0812h/081Ah) setup of SyncManager2 is inaccurate. Different from RxPDO size. A Control Register (ESC register 0814h/081Ch) setup of SyncManager2 is inaccurate. Set other than 100110b to bit5-0 ESM state after alarm: PreOP ESC register AL Status Code:001Dh/001Eh	The servo alarm can be cleared by setting SM2013+20*(N-1) or by servo panel F0-00=1.
E-850	TxPDO assignment error protection	The data size of TxPDO map is set up exceeding 24 bytes ESM state after alarm: PreOP ESC register AL Status Code: 0024h	TxPDO data size is set up within 24 bytes. The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
E-851	RxPDO assignment error	The data size of RxPDO map is set up exceeding 24 bytes.	RxPDO data size is set up within 32 bytes.

Alarm code		Reasons	Solution
	protection	ESM state after alarm: PreOP ESC register AL Status Code:0025h	The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
E-881	Control mode setting error protection	- The PDS state was changed to "Operation enabled" when the value set to 6060h (Modes of operation) is 0 and the value set to 6061h (Modes of operation display) is 0. Unsupported control mode is set to 6060h	Check preset value of 6060h(Modes of operation). The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
		(Modes of operation). A control mode other than position control is set to 6060h (Modes of operation) in full-closed control.	
		ESM state after alarm: It remains in the present ESM state. ESC register AL Status Code:0000h	
E-882	ESM requirements during operation error protection	- When a PDS state was "Operation enabled" or "Quick stop active", the transition command to other ESM state was received. ESM state after alarm: A state transition request from host contoller is followed.	Check the state transition request from higher rank equipment. The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
E-883	Improper operation error protection	ESC register AL Status Code: 0000h - When EXT1/EXT2 is not assigned to input signal, EXT1/EXT2 was selected in trigger selection of a touch probe (60B8h (Touch probe function)). The calculation result of electronic gear ratio fell outside the range of 1/1000 to 1000 times;	The servo alarm can be cleared by setting SM2013+20 * (N-1) or by servo panel F0-00=1.
		 In the calculation process of electronic gear ratio, the denominator or numerator exceeds an unsigned 64-bit size. In the final calculation result of electronic gear ratio, the denominator or numerator exceeds an unsigned 32-bit size. 	
		 When Z-phase is chosen by trigger selection of a touch probe (60B8h(Touch probe function)) at the time of absolute mode of full closed. When the software limit function is enabled, a wraparound occurred to the actual position or command position. 	
		ESM state after alarm: It remains in the present ESM state. ESC register AL Status Code:0000h	
E-899	The program cannot access the bus peripherals correctly	The EEPROM of the bus is not updated correctly (updated at the factory) Bus driver related hardware error	Update the EEPROM of the bus Contact the agent or manufacturer

10.2 EtherCAT communication unrelated alarm

DS5 alarm code format is E-XX\(\sigma\), "XX" means main type, "\(\sigma\)" means sub-type.

Тур		Alarm	Description	Reasons	Solutions		
	1	EEEE1		1) The power supply	1 Stable power supply to ensure the		
-	3	EEEE2 EEEE3		voltage fluctuates greatly, and the panel refresh fails	stability of power supply voltage;		
EEEE	4	EEEE4	Communication error between panel and CPU	due to the low voltage ② The panel program is damaged ③ Communication enters into an endless loop	 ② Power off and power on again. If the alarm cannot be removed, please contact the agent or manufacturer; ③ Check the operation after unplugging the communication terminal 		
	0	E-010	Firmware version mismatch	Downloaded firmware version error	Please contact the agent or the manufacturer		
	3	E-013	FPGA loading error	Program damaged Device damaged	Please contact the agent or the manufacturer		
01	4	E-014	FPGA Access error	1 Program damage 2 Device damage 3 Serious external interference	Please contact the agent or the manufacturer		
	5	E-015	Program running error	Program damage	Please contact the agent or the manufacturer		
	7	E-017	Processor Running Timeout	Program damage	Please contact the agent or the manufacturer		
	9	E-019	System password error	Program damage	Please contact the agent or the manufacturer		
	0	E-020	Parameter loading error	Faliure of parameter self-checking	Re-energizing can restore default parameters, if there are repeated problems, please contact the agent or manufacturer.		
	1	E-021	Parameter range beyond limit	Setting values are not within the prescribed range	Check parameters and reset them		
	2	E-022	Parameter conflict	Conflict of TREF or VREF Function Settings	 Check whether the parameter settings meet the requirements; Under P0-01=4 mode, P3-00 will alarm when set to 1 		
02	3	E-023	Sampling channel setting error	Error setting of custom output trigger channel or data monitoring channel	Check that the settings are correct		
	4	E-024	Parameter conflict	Low voltage of power grid	 (1) If it is single-phase 220V power supply, please connect L1 and L3. (2) show E-024 immediately after power failure (3) Resetting parameters 		
	5	E-025	Erase FLASH error	Abnormal parameter preservation during power failure	Please contact the agent or the manufacturer		
	6	E-026	Initialization FLASH error	Power supply instability of FLASH chip	Please contact the agent or the manufacturer		
	8	E-028	EEPROM write in error	Voltage instability or chip abnormality	Please contact the agent or the manufacturer		
03	0	E-030	Bus voltage U0-05 is higher than the actual preset threshold, 220V Power Supply Machine (U0-05≥402V)	High voltage of power grid	Check the fluctuation of power grid, 220V driver normal voltage range 200V ~ 240V, 380V driver normal voltage range 360V ~ 420V. If the voltage fluctuation is large, it is recommended to use the correct voltage source and regulator.		

Туре	e	Alarm code	Description	Reasons	Solutions
			380V Power Supply Machine (U0-05≥780V)	Excessive load moment of inertia (insufficient regeneration capacity)	(1) Connect external regenerative resistor, (220V: bus voltage U0-05 = 392 discharge starts, U-05 = 377 discharge ends; 380V: U-05 = 750 discharge starts, U-05 = 720 discharge ends;) (2) Increase Acceleration and Deceleration Time (3) Reduce load inertia (4) Reduce start-stop frequency (5) Replacement of larger power drivers and motors
				Brake resistance damage or excessive resistance value Acceleration and	Check the regenerative resistor and replace the external resistor with the appropriate resistance value. Extending Acceleration and
				deceleration time is too short	Deceleration Time
				Hardware Fault of Driver Internal Sampling Circuit	The AC gear of the multimeter measures the input value of the servo LN (R/S/T), which is $220V \pm 10\%$ of the normal value. If the power supply voltage is more than $220V+10\%$ ($380V+10\%$), check the power supply voltage; if the power supply voltage is normal, then the servo BB state, monitor U0-05, the voltage measured by the multimeter * $1.414 < U0-05$ (within $10V$ error), then the servo driver is faulty and needs to be sent back for repair.
			Bus voltage U0-05 is lower than the	low voltage of power grid when normal power on Instantaneous power	(1) Check the fluctuation of power grid. The normal voltage range of 220V driver is 200V~240V. If the voltage fluctuation is large, the voltage regulator is recommended. (2) Replacement of larger capacity transformers
04	0	E-040	actual preset threshold. 220V power supply machine $(U0-05 \le 150V)$ 380V power supply machine $(U0-05 \le 300V)$	failure Hardware Fault of Driver Internal Sampling Circuit	Re-energize after voltage stabilization The AC gear of the multimeter measures the input value of the servo LN (R/S/T), which is $220V \pm 10\%$ of the normal value. If $< 220V + 10\%$ (380V + 10%), then check the supply voltage; if the supply voltage is normal, then servo BB state, monitoring U0-05, multimeter measurement voltage * 1.414 > U0-05 (error within 10V), then the servo driver is faulty and needs to be sent back for repair
	1	E-041	Driver power down	Driver power off	Check the power supply
	3	E-043	Bus Voltage Charging Failure	low voltage of power grid when normal power on Hardware damage	low voltage of power grid when normal power on When the driver is on, please pay attention to whether there is relay

Тур	e	Alarm code	Description	Reasons	Solutions
					actuation sound
	4	E-044	Three phase voltage input phase loss	Three phase input power supply is lack of phase	Check the power supply
			Module temperature is too	Running under heavy load for a long time	Re-consider the capacity of the motor, monitor the U0-02 torque during operation, whether it is in the value of more than 100 for a long time, if yes, please chose the large-capacity motor or load reduction.
06	0	E-060	high(Module temperature U-06 ≥ 90°C alarm, U-06 ≥ 70°C Warning)	Excessive ambient temperature	 (1) Enhance ventilation measures to reduce ambient temperature; (2) Check whether the fan rotates when the servo is enabled; when the module temperature U-06 ≥45°C, the fan opens.
				Fan damage	Replace the fan
	1	E-061	Motor overheat	Alarm when motor temperature is higher than 95°C	 Check whether the motor fan is abnormal Contact the manufacturer
	3	E-063	Thermocouple disconnection alarm	1 The motor thermocouple of 11kw and above power is disconnected 2 False opening detection and disconnection alarm of motor below 11kw	Check the external thermocouple connection; Shield thermocouple disconnection alarm: P0-69.1 = 1
		o E-080 speed ≥ P3-21/P3-22) The maximum forward speed is P3-21 and the		Motor code not match	Check if the driver P0-33 is identical with the motor code of the motor label (the number after MOTOR CODE), if not, please change to the same one, then power on again.
				UVW wiring error	Inspection of motor UVW wiring, need
	0		E-080 P3-21/P3-22) The maximum forward speed is	Motor speed too fast	to be connected in phase sequence. (1) The maximum speed limit value P3-21/P3-22 was reduced. (2) To confirm whether the external force makes the motor rotate too fast, whether the pulse input frequency is too high, and whether the electronic gear ratio is too large.
08			maximum reverse	Encoder fault	(1) Check the encoder cable or change a new one (2) Set the servo driver to BB state and the driver to U-10. Rotate the motor shaft slowly by hand to see if the value of U-10 changes normally, increasing in one direction and decreasing in one direction (0-9999 cycle display).
				Parameter setting	When the actual speed is greater than the P3-21/P3-22 value, an alarm will be given
	2	E-082	Encoder zero position deviation protection 1	Causes of UVW three-phase wrong wiring, motor encoder zero position deviation, etc	Check whether the three phases of the power line are connected according to the phase sequence of UVW Check the encoder zero position,

Тур	ne	Alarm	Description	Reasons	Solutions
					please contact the manufacturer's technical support
10	0	E-100	Position offset too large	In position control, the difference between the given position and the actual position exceeds the limit value	 Observe whether the motor is blocked or not. Reducing the given speed of position; Increase the deviation pulse limit P0-23.
	1	E-101	Sudden change of position command	The position difference every 6K cycle exceeds the command difference alarm value set in P0-70	1 Check and modify the procedure; 2 Set appropriate P0-70 value
	0	E-110	External UVW Short Circuit Discovered in Self-Inspection		1 Check UVW wiring, need to be in phase sequence (brown U, black V, blue W) 2 Measure whether the UVW phase
	2	E-112	U phase current overcurrent		resistance of the motor is balanced. If the phase resistance is unbalanced, replace the motor.
11	3	E-113	V phase current overcurrent	①U, V, W wiring error ②Driver UVW output Short Circuit or motor Failure ③Load part is blocked ④ High-speed start-stop instantaneous alarm ⑤ Encoder problem	Measure whether there is short circuit between UVW and PE of the motor. If there is short circuit, replace the motor. Measure the driver side UVW output through multimeter (diode gear), black pen P+, red pen to measure UVW; red pen P-, black pen to measure UVW; if anyone is 0 in 6 groups of value, replace the driver. ③ It is suggested that the motor should be operated on an empty shaft to eliminate the load problem. ④ Increase Acceleration and Deceleration Time ⑤ Check the encoder cable or change a new one. Set the servo driver to BB state and the driver to U-10. Rotate the motor shaft slowly by hand to see if the value of U-10 changes normally, increasing in one direction (0-9999 cycle display).
15	0	E-150	Power cable disconnection	Any phase in UVW of driver, cable or motor broken	Disconnect the power supply of the
16	1	E-161	Driver thermal power overload	Overload, the actual operating torque exceeds the rated torque, and continuous operation for a long time. (Monitor U0-02 to check the actual operating torque. If the motor is in normal	Increase the capacity of drivers and motors. Extend the acceleration and deceleration time and reduce the load. Monitor the U-00, whether it is running over speed.

Туре	e	Alarm code	Description	Reasons	Solutions
				operation, it will not jam or jitter. If the U0-02 is longer than 100, it will be considered improper selection of the motor.) Mechanisms are impacted, suddenly weighted and distorted.	Eliminate mechanical distortion. Reduce load
				Motor action when motor brake is not opened	Measure the voltage of the brake terminal and decide to open the brake. It is suggested to use servo BK signal to control the brake lock. If it is not servo control, attention must be paid to the timing of brake opening and motor action.
				Wrong wiring of encoder cable, power cable or broken wire or loose pin of connector plug	Check the UVW connection of power cable to see if there is any phase sequence error. The multimeter is used to measure whether all the encoder cable are on. Check whether the plug is loose, for machine vibration, whether the plug has shrinkage pin, virtual welding, damage.
				In multiple mechanical wirings, incorrect connection of motor cable to other shafts leads to incorrect wiring.	Detection of servo wiring, the motor cable, encoder cable are correctly connected to the corresponding shaft.
				Poor gain adjustment results in motor vibration, back and forth swing and abnormal noise.	Readjustment of gain parameters
				Driver or motor hardware failure	There are servo cross test or motor empty shaft on site, F1-01 trial operation, F1-00 jog run can not rotate uniformly; Replace the new driver or motor
	5	E-165	Anti-blocking alarm Judging that the current motor output torque is greater than P3-28/P3-29 (internal forward/reverse torque limit), and the time reaches P0-74 (unit ms), and the speed is lower than P0-75 (unit 1 rpm).	(1) Machinery is impacted, suddenly becomes heavier and distorted; (2) When the brake of the motor is not opened, the motor moves; (3) The parameter setting is unreasonable.	(1) Eliminate the factors of mechanical distortion. Reduce load (2) Measure the voltage of the brake terminal and determine the opening of the brake; It is suggested to use servo BK brake signal to control the brake lock. If it is not servo control, attention must be paid to the timing of brake opening and motor action. (3) Monitor the actual output torque range of U0-02 and check whether the setting of P3-28/29 torque limit is reasonable. (After version 3760, the output torque limit setting parameters of anti locked rotor alarm are P3-38 and P3-39)
20	0	E-200	Regenerative resistance overload	High Voltage Fluctuation in Power Grid Selection of regenerative	Stable the input voltage Replacement of higher power

Тур	e	Alarm code	Description	Reasons	Solutions
				resistance is too small Acceleration and	regenerative resistors (refer to chapter 1.4.1)
				deceleration time is too short	Extending Acceleration and Deceleration Time
				Hardware damage	The AC gear of the multimeter measures the input value of the servo LN (R/S/T), which is $220V \pm 10\%$ of the normal value. If the power supply voltage is more than $220V+10\%$ ($380V+10\%$), check the power supply voltage; if the power supply voltage is normal, then in servo BB state, monitor U0-05, the voltage measured by the multimeter * $1.414 < U0-05$ (within $10V$ error), then the servo driver is faulty and needs to be sent back for repair.
				Motor matching error	Check if the motor matches correctly
	0	0 E-220	E-220 Communication error of absolute servo encoder	Unconnected encoder cable or poor contact	Check whether the value of U0-54 increases rapidly. If yes, the encoder circuit is disconnected. Disconnect the power supply of the driver, check the connection of the encoder cable, if there is cable loosening, it is recommended to use the multimeter to test the conduction condition; after eliminating errors, power on again Hot plugging is strictly prohibited, and special cables are required for tank chains.
22				Received encoder data errors, and the number of errors exceeds the number of error retries of encoder registers P0-56	Check whether the value of U0-79 and U0-54 increase. If yes, the encoder is interfered. Encoder wire and strong power do not have the same pipeline wiring; install filter on servo driver power input side; encoder wire sleeves magnetic ring; shut down welding machine type of equipment with large interference
	1	E-221	Too many CRC errors in encoder communication	The received encoder data is wrong and the number of errors exceeds the value in encoder error retry number register P0-56	Encoder interfered, isolate interference source
	2	E-222	Absolute value servo encoder battery low voltage alarm (can shield this alarm)	Battery Voltage in Battery Box of Encoder cable is less than 2.75V	Please replace the battery while keeping the power supply ON of the servo driver in order to avoid the error of encoder position information. Battery specification: No.5 battery, 3.6V (model CP-B-BATT, CPT-B-BATT)
	2	Z C-222		Power on alarm for new machine	(1) When the absolute value motor is powered off, the memory position depends on the battery on the encoder cable. Once the encoder cable and the motor are disconnected, the power supply can not be carried out, which will

Тур	e	Alarm code	Description	Reasons	Solutions
					lead to the loss of the current position of the motor, it will alarm 222. Please set F0-00=1 to clear the alarm, it can be used normally. (2) The alarm can be shielded by using F0-79. When P0-79 is set to 1, it will be used as a single-loop absolute value motor, and the current position will not be remembered when power off.
	3	E-223	Data access alarm of absolute value servo encoder	Encoder cable with battery box is not used for multi-turn absolute motor Generally, it is the problem of the encoder itself, or the power supply of the encoder is unstable Abnormal power on of main control chip of multi-turn absolute value servo encoder ADC sampling is out of range, some resistance and capacitance devices have problems or the signal consistency of magnetic sensor is poor	①Please use encoder cable with battery box; ② Power off and power on again (the driver panel shall be completely off). If the alarm cannot be removed, please contact the agent or manufacturer
	7	E-227	Power on encoder multi turn signal data error	Generally, it is the problem of the encoder itself, or the power supply of the encoder is unstable	In the case of no battery, unplugging the encoder cable may cause this alarm.
	8	E-228	Absolute value servo encoder value overflow	The motor runs in one direction continuously, the encoder data value is too large, overflow	 Set F1-06 = 1, clear the absolute encoder's multiple turns; Set P0-79 = 2, the alarm can be shielded.
	9	E-229	Encoder electrical angle zero position deviation protection	When the encoder zero position is offset, or the motor power line phase sequence is connected incorrectly, the motor gets wrong data during control calculation due to the large electrical angle deviation used for control, which may cause the motor to gallop and cause the electrical angle zero position deviation alarm if it cannot work normally.	Check whether the three phases of the power line are connected according to the phase sequence of UVW Check the encoder zero position.
24	0	E-240	Timing error in fetching encoder position data	① The number of consecutive errors in encoder data update sequence is greater than the value in P0-68	1 Restart driver 2 Check the arrangement of transmission cables to ensure that the strong and weak current are wired separately.

Тур	e	Alarm code	Description	Reasons	Solutions
				② CPU timer fluctuates	(3) High current equipment is supplied separately.(4) The grounding is good.
	1	E-241	Encoder responding data scrambling	The received encoder data is wrong and the number of errors exceeds the value in encoder error retry number register P0-56	 Check the arrangement of transmission cables to ensure that the strong and weak current are wired separately. High current equipment is supplied separately. The grounding is good.
	0	E-260	Over range alarm	Overrun signal was detected and the overrun processing mode was configured to alarm	If you do not want to alarm immediately when the overrun occurs, you can change the overrun signal processing mode.
	1	E-261	Overrun signal connection error	(1) When the motor is in forward rotation, it encounters reverse overrun signal. (2) When the motor is in reverse rotation, it encounters forward overrun signal.	Check over-run signal connection and over-run terminal allocation.
	2	E-262	Control stop timeout	(1) Excessive inertia(2) Stop timeouts too short(3) The setting of braking torque is too small.	 (1) Reduce inertia or use brake motor; (2) Increase the stop timeout time P0-30; (3) Increase braking torque P3-32.
26	4	E-264	Excessive vibration	(1) Oscillation caused by external forces (2) Load inertia is large and the setting of load inertia ratio is wrong or the gain is too small, which leads to the oscillation of positioning.	(1) Check the source of external force to see if there are any problems in mechanical installation; (2) Increase the servo gain to improve the anti-disturbance ability; (3) Acquisition speed curve analysis; When the first three peaks are convergenced after pulse instruction completed (0.8* first peak > second peak and 0.8* second peak > third peak), the driver should not alarm, which can adjust the relevant threshold. When the first three peaks speed are not less than 300 rpm for three consecutive times after the completion of the pulse instruction, the driver will alarm.
	5	E-265	Excessive motor vibration	Mechanical vibration	Check the motor installation
28	0	E-280	Failed to read motor parameters	Request to read EEPROM failed	On the premise that the driver and motor are matched and can be used together, read the alarm shielding position of motor parameters through P0-53, and set the motor code of P0-33 correctly
20	1	E-281	Error writing data to encoder EEPROM	Request to write EEPROM failed	On the premise that the driver and motor are matched and can be used together, read the alarm shielding position of motor parameters through P0-53, and set the motor code of P0-33 correctly
31	0	E-310	Power mismatch between driver	Such as 750W driver with 200W motor	Match the correct motor and driver, and use it after setting the P0-33 motor code

Тур	e	Alarm code	Description	Reasons	Solutions
			and motor		correctly
	1	E-311	When the motor code is read automatically, the motor parameter is 0, and the driver P0-33 = 0	Motor code not set	On the premise that the driver and motor are matched and can be used together, read the alarm shielding position of motor parameters through P0-53, and set the motor code of P0-33 correctly
	2	E-312	Reading motor parameter is damaged	Parameter CRC verification failed	On the premise that the driver and motor are matched and can be used together, read the alarm shielding position of motor parameters through P0-53, and set the motor code of P0-33 correctly
	3	E-313	Encoder software version mismatch	Encoder software version mismatch	① Update driver firmware to maximize current motor parameter performance ② Read the alarm shielding position of motor parameters through p0-53, and set the motor code of P0-33 correctly. At this time, the motor parameters are in the driver, which can work normally, but may affect some performance
	4	E-314	Motor code does not match software version	Encoder hardware version is higher than driver firmware version	Contact the manufacturer's technical support to update the driver firmware
	5	E-315	When the motor code is read automatically, the motor parameter is 0, and the driver $P0-33 \neq 0$	Read the motor code is 0	On the premise that the driver and motor are matched and can be used together, read the alarm shielding position of motor parameters through P0-53, and set the motor code of P0-33 correctly
	6	E-316	Auto-read code error	The auto read motor code is inconsistent with the motor code set in P0-33	Check U3-00 and motor label. ① If the two values are the same, change P0-33 motor code or set P0-33 to 0 to read motor code automatically; ② If the two values are different, contact the manufacturer for technical support
32	0	E-320	Driver cascading alarm	Terminal emergency alarm function	Check if there are alarm output signals from other drivers connected to the SI input terminal of the driver, and prioritize processing this alarm. Correctly setting parameters P5-68
34	0	E-340	STO status is not synchronized	STO1 and STO2 input states are inconsistent	① Ensure that STO1 and STO2 are disconnected simultaneously; ② If a certain STO is still in a high level state after disconnecting the 24V power supply, please contact the original factory technical support.
	2	E-342	STO buffer circuit abnormal alarm	STO buffer circuit abnormality	Please contact the original factory technical support.
	3	E-343	EDM circuit error	EDM output signal error	Please contact the original factory technical support.

10.3 Alarm read

0000H ~ FEFFh is defined according to IEC61800-7-201.

FF00h ~ FFFFh can be defined according to users, as follows.

The lower 8 bits of the defined value (FF00h \sim FFFFh) shown in the following table indicates the main code of the alarm number of the servo abnormal (alarm). (the secondary code of the alarm number is not read.)

In addition, the main code of alarm number is represented by hexadecimal number.

Index	Sub-Index	Name/Description	Range	DateType	Access	PDO	Op-mode	
603Fh	00h	Error code	0~65535	U16	ro	TxPDO	All	
		Now the alarm of th	e servo driv	er (only the	main number).			
		When the alarm doe	s not occur,	it will displa	y 0000H.			
		When an alarm occu	ırs, an alarn	n is displayed	l .			
		FF++1						
		FF**h						
		Alarm (main) No. (00h ~ FFH)						
		(Example) FF03h 03h = 3d E-030 (overvoltage protection) occurs						
		FF55h 55h = 85d	FF55h 55h = 85d E-850 (TxPDO configuration error protection), E-851 (RxPDO					
		configuration error	protection)					
		any one of them occ	urs					
		As an exception, A0	00h is displ	ayed in the c	ase of E-817 (Sy	ncmanager 2/	3 setting error).	

Alarm code can also be read through SDO instruction. U1-00 corresponding object dictionary is 0x3100. The command is as follows:

Read the value in slave object dictionary 0x3100: 00 (current alarm code) with station number 0 to register D0. (Refer to XDH/XLH motion control manual for the specific use of this instruction)

10.4 Alarm clear

Reset method of protection function associated with EtherCAT that can be cleared in case of abnormal (alarm) The following methods (1)(2)(3)(4) can be used for abnormal (alarm) clearing no matter which method. In addition, for protection functions other than EtherCAT association, please refer to the basic function specifications of technical manual.

Method ①: bit4 (Error Ind ACK) of AL control is set to "1". After that, bit7 of 6040h (control word) is cleared by setting $0 \rightarrow 1$ (sending Fault result command). After the alarm is cleared, the PDS status is converted from Fault to Switch on disabled.

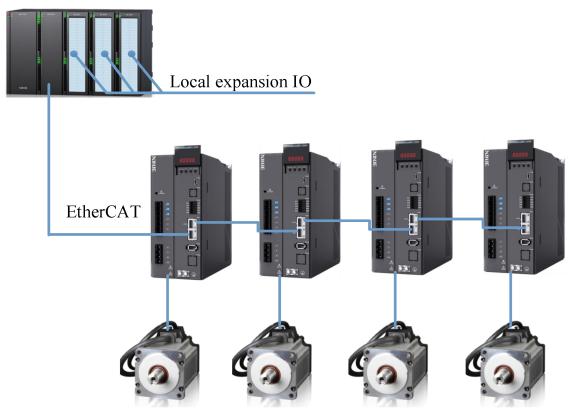
Method ②: carry out abnormal (alarm) clearing by servo driver (panel F0-00, upper computer software). After the alarm is cleared, the PDS status is transferred from Fault to Switch on disabled.

Method (3): the external alarm clear input (A-CLR) of servo driver changes from OFF state to ON state. After the alarm is cleared, the PDS status is migrated from Fault to Switch on disabled.

Method 4: Clear the alarm through SDO instruction. The object dictionary corresponding to F0-00 is 0x4000. The command is as follows:

When an alarm occurs, write 1 to D0 to clear the alarm.

(Refer to XDH/XLH motion control manual for the specific use of this instruction)

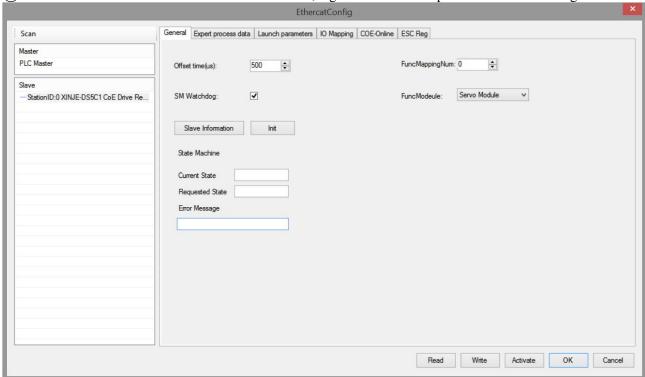

11 Applications

11.1 XINJE XG2/XDH and DS5C2 Ethercat communication

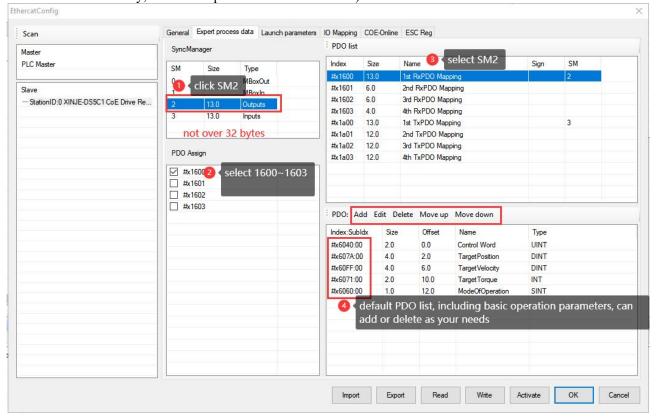
11.1.1 System configuration

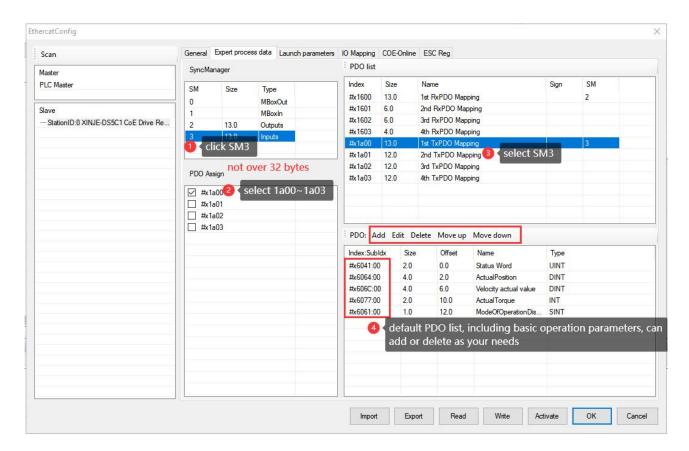
Name	Model	Quantity	Note
Software	Xinje PLC software	1	
Xinje servo	DS5C2-41P0-PTA	1	
Cable	JC-CB-3	some	Connect servo and PC

11.1.2 System topology

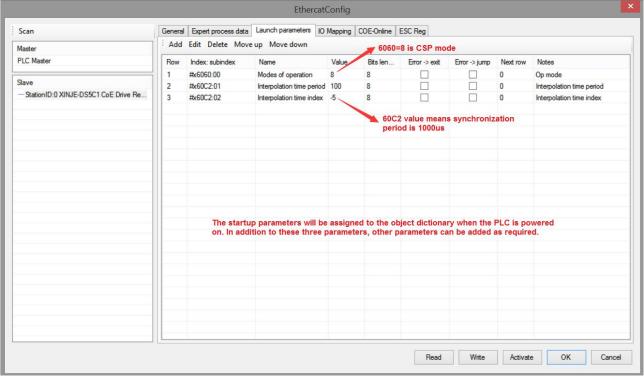

The DS5C2 driver's network interface plug-in follows the standard of bottom in and top out. For example, the network cable from the master station is connected to the second network interface in front of the first driver, and the network cable from the first network interface is connected to the second network interface in front of the second driver, and so on.

11.1.3 Debugging steps

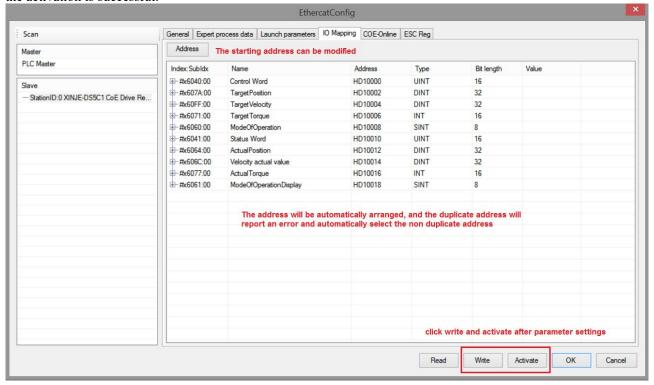

1) CSP mode operation example

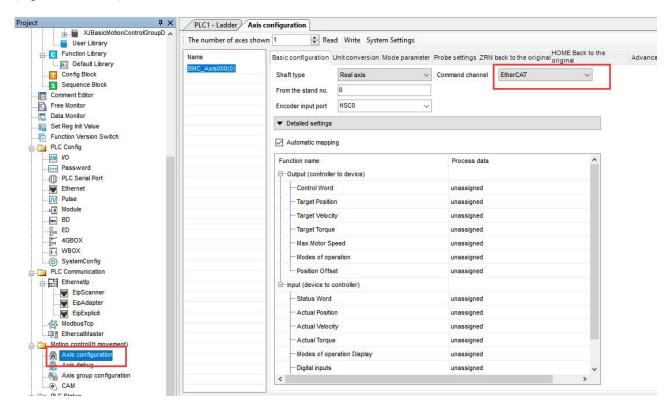

Register	Note	Unit
RXPDO[0x607A]	Position setting, Modification via IO mapping in CSP mode is invalid, which	Command
KAFDO[0x00/A]	is controlled by NC module	unit
TXPDO[0x6064]	Position feedback (motor actual position)	Command
		unit
TXPDO[0x606C]	Speed feedback	Command
		unit /s
RXPDO[0x6060]	Set to 8	-

1 Click [scan] or [add] in the EtherCAT interface, [general] interface please use default settings.



② Click Expert process data → PDO assign, select 1600, 1A00. (The default configuration can meet the basic use of CSP. If necessary, other PDO parameters can be added.)


3 Confirm 6060h value is 8 in 【Lauch parameters】.

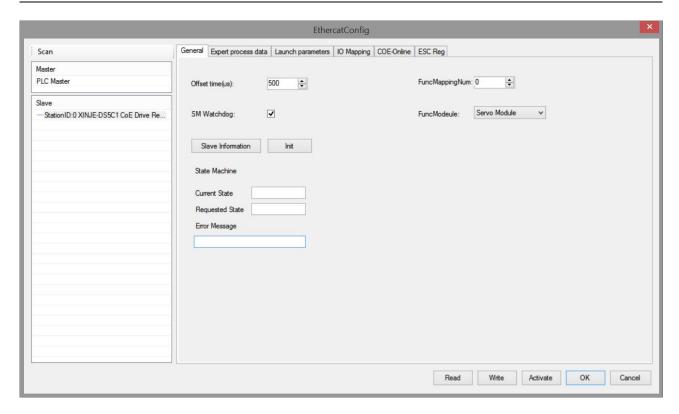

There are three default configurations in the startup parameters, among which 6060h is the slave operation mode, with a default value of 8 (CSP mode); 60C2-1 and 60C2-2 are synchronization unit cycles, 60C2-1 is the value of synchronization unit cycle, and 60C2-2 is the unit of synchronization unit cycle. For example, the default synchronization unit cycle is 100×10^{-5} s, which is 1000us. (This parameter will automatically change with the synchronization cycle of the main station configuration and does not require manual modification).

(4) 【IO mapping】 default start address is HD10000, which can be changed if necessary.

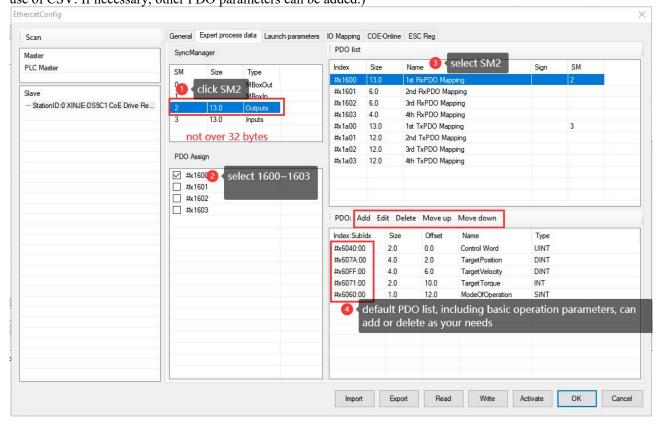
 \bigcirc After setting all the parameters, click [write] \rightarrow [activate] \rightarrow [OK]. The parameters will take effect after the activation is successful.

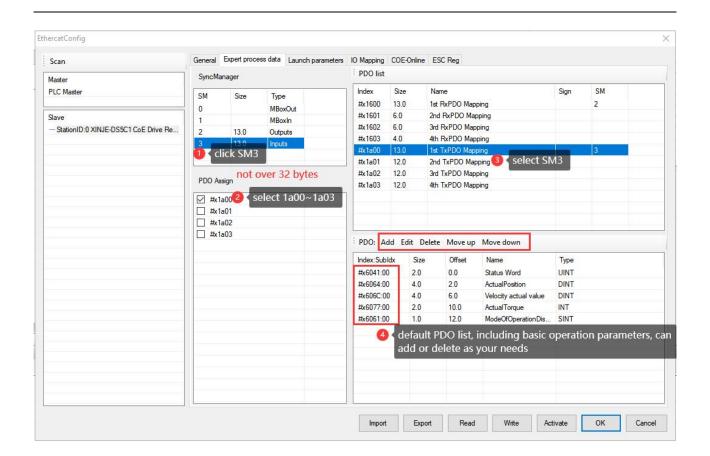
- 6 After the activation is completed, the slave station state machine (SD8021) will change state from $1 \rightarrow 2 \rightarrow 4 \rightarrow 8$, 8 means OP state. At this time, both SDO and PDO can receive and send messages.
- (7) Confirm that the instruction channel (SFD8001+300*N) in the axis configuration parameters is Ethercat (register value is 0).

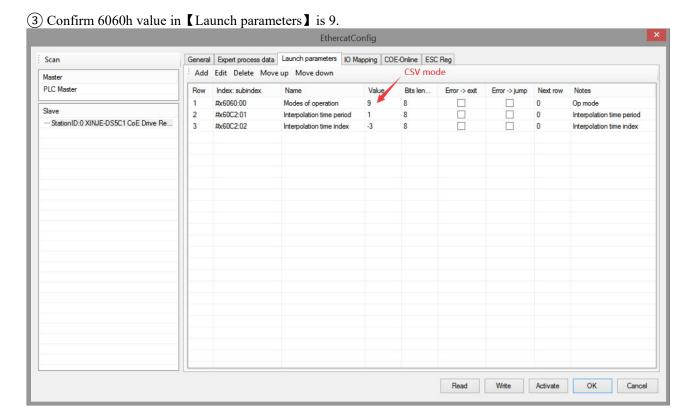
(8) In CSP mode, the current given position can be monitored through HD10002 (mapping of 607Ah), the current actual position of the motor can be monitored through HD10012 (mapping of 6064h), and the current actual speed can be monitored through HD10014 (mapping of 606Ch).


PLC1-自由监控1				Ţ
监控窗口 → 添加	修改 删除 全部	部删除 上	移 下移 置顶	置底
名称	监控值	类型	映射地址/字长	注释
_ ♦ M0	ON	ВП	位	使能
₩20	OFF	ВП	位	周期位置运行
— ♦ HD300	131072	LREAL	四字	周期位置
→ HD10002	131072	DINT	双字	Station ID:0,#x607A:0,Target position
— ♦ HD10008	8	INT	单字	Station ID:0,#x6060:0,Modes of operation
- ♦ HD10012	131072	DINT	双字	Station ID:0,#x6064:0,Position actual value
→ HD10004	0	DINT	双字	Station ID:0,#x60FF:0,Target velocity
→ SFD811	1	INT	单字	运动控制功能: 0-简单型; 1-入门实用型;

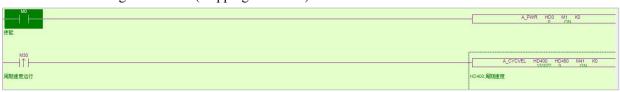
- When M20 goes from OFF to ON, perform periodic position control on the axis specified by HD300. After successful execution, M21 is set to ON to indicate that the axis is in a periodic control state. By periodically assigning values to HD300, control of the axis is achieved.
- Before triggering the command, please ensure that the value of HD300 is the same as the current position, otherwise the position will generate a step.
- Periodic position control requires periodic writing of the target position value into the register, with no significant changes in position, to avoid causing the axis to fly due to a large difference between the given cycle position and the previous cycle position.


2) CSV mode operation example


2) es i mede eperation en	1	
Register	Explanation	Unit
RXPDO[0x60FF]	Target velocity	Command
		unit/s
TXPDO[0x6064]	Position actual value	Command unit
TXPDO[0x606C]	Velocity actual value	Command unit
	·	/s
RXPDO[0x6080]	Max motor speed ,can be modified online through COE-Online	r/min
RXPDO[0x6060]	Set to 9	-

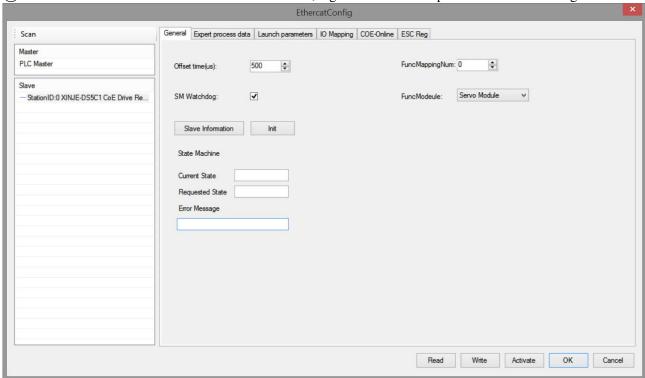

1 Click [scan] or [add] in the EtherCAT interface, [general] interface please use default settings.

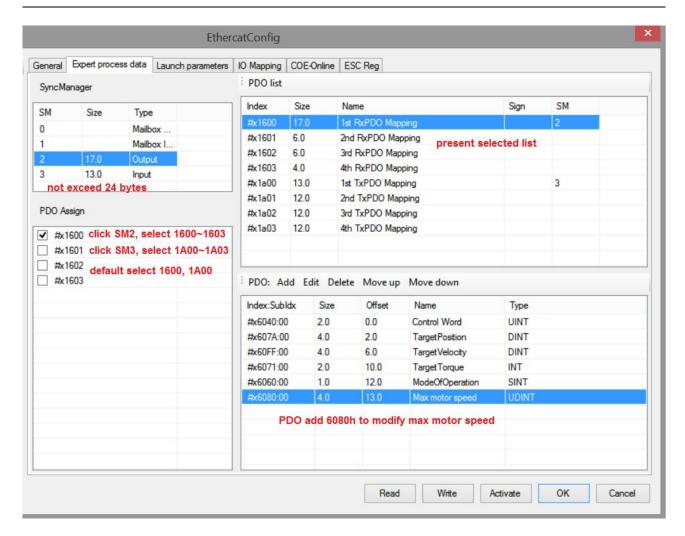
② Click 【Expert process data】→【PDO list】, select 1600, 1A00. (The default configuration can meet the basic use of CSV. If necessary, other PDO parameters can be added.)



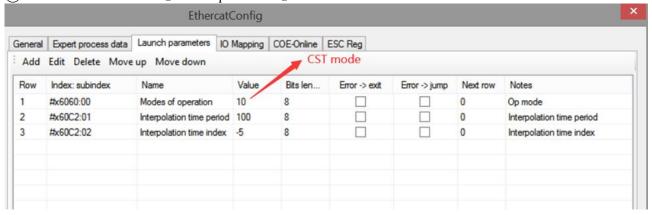
- 4 【IO mapping】 default start address is HD10000, which can be changed if necessary.
- \bigcirc After setting all the parameters, click [write] \rightarrow [OK]. The parameters will take effect after the activation is successful.

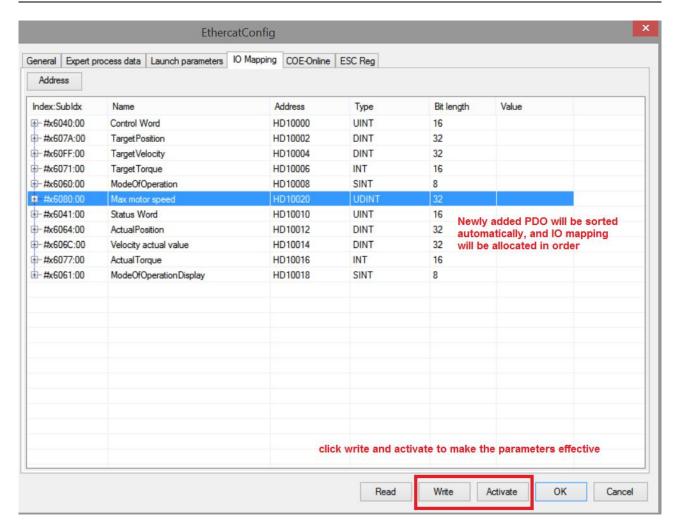
- 6 After the activation is completed, the slave station state machine (SD8021) will change state from $1 \rightarrow 2 \rightarrow 4 \rightarrow 8$, 8 means OP state. At this time, both SDO and PDO can receive and send messages. After the state is switched to OP, 6080h (maximum motor speed) can be modified through COE-Online.
- (7) After enabling ON, HD10000 (mapping of 6040h) will indicate the slave enable status from $6 \rightarrow 7 \rightarrow 15$, which can be assigned a value to HD10004 (mapping of 60FFh) as the given speed in CSV mode (real-time speed interpolation can be achieved by modifying HD1004 in I9900 interrupt).
- (8) In CSV mode, the current given speed can be monitored through HD10004 (mapping of 60FFh), the current actual position of the motor can be monitored through HD10012 (mapping of 6064h), and the current actual speed can be monitored through HD10014 (mapping of 606Ch).




3) CST mode operation example

Register	Explanation	Unit
RXPDO[0x6071]	Target torque	0.1%
TXPDO[0x6064]	Position actual value	Command unit
TXPDO[0x606C]	Velocity actual value	Command unit/s
TXPDO[0x6077]	Torque actual value	0.1%
RXPDO[0x6080]	Max motor speed	r/min
RXPDO[0x6060]	Set to 10	-


1 Click [scan] or [add] in the EtherCAT interface, [general] interface please use default settings.


② Click $[Expert process data] \rightarrow [PDO list]$, select 1600, 1A00. The default configuration can meet the basic use of CST. If necessary, other PDO parameters can be added. For example, add 6080h to modify max motor speed and limit the torque.

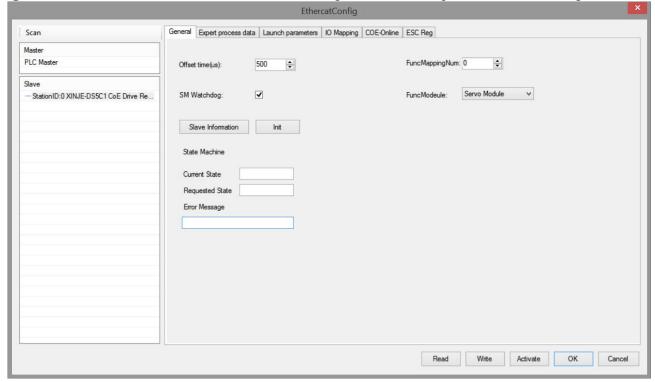
(3) Confirm 6060h value in 【Launch parameters】 is 10.

- (4) 【IO mapping】 default start address is HD10000, which can be changed if necessary.
- \bigcirc After setting all the parameters, click [write] \rightarrow [activate] \rightarrow [OK]. The parameters will take effect after the activation is successful.

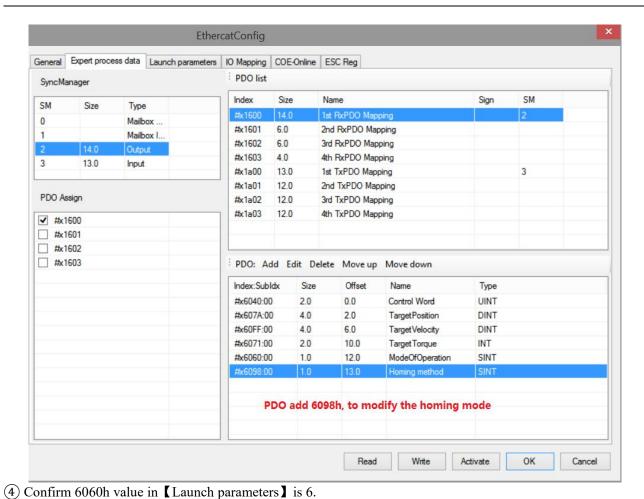
- 6 After the activation is completed, the slave station state machine (SD8021) will change state from $1 \rightarrow 2 \rightarrow 4 \rightarrow 8$, 8 means OP state. At this time, both SDO and PDO can receive and send messages.
- \bigcirc After enabling ON, HD10000 (mapping for 6040h) will indicate the slave enable state from $6 \rightarrow 7 \rightarrow 15$, which can be assigned a value to HD10006 (mapping for 6071h) as the given torque in CST mode.
- (8) In CST mode, the current given torque can be monitored through HD10006 (mapping of 6071h), the current actual position can be monitored through HD10012 (mapping of 6064h), the current actual speed can be monitored through HD10014 (mapping of 606Ch), the current actual torque can be monitored through HD10016 (mapping of 6077h), and the maximum motor speed can be limited through 6080h.

Note: After adding the speed limit parameter, ensure that the speed limit is within the appropriate range during operation.

监控窗□ ▼ 添加	修改 删除 全部	部删除 上	移 下移 置顶	置底
名称	监控值	类型	映射地址/字长	注释
— ⋄ мо	ON	ВП	位	使能
— ♦ M40	OFF	ВП	位	周期转矩运行
— ♦ HD500	50	LREAL	四字	周期转矩
₩ HD10020	10	DINT	双字	Station ID:0,#x6080:0,Max motor speed
→ HD10002	3150984	DINT	双字	Station ID:0,#x607A:0,TargetPosition
→ HD10004	0	DINT	双字	Station ID:0,#x60FF:0,TargetVelocity
— ♦ HD10008	10	INT	单字	Station ID:0,#x6060:0,ModeOfOperation
— ♦ HD10014	21816	DINT	双字	Station ID:0,#x606C:0,Velocity actual value
— ♦ HD10012	3150939	DINT	双字	Station ID:0,#x6064:0,ActualPosition
—♦ SFD811	1	INT	单字	运动控制功能: 0-简单型; 1-入门实用型;

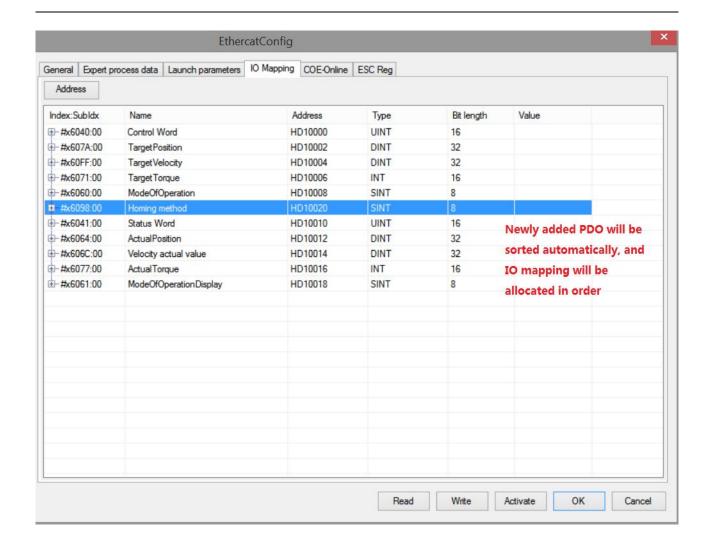

4) HM mode operation example

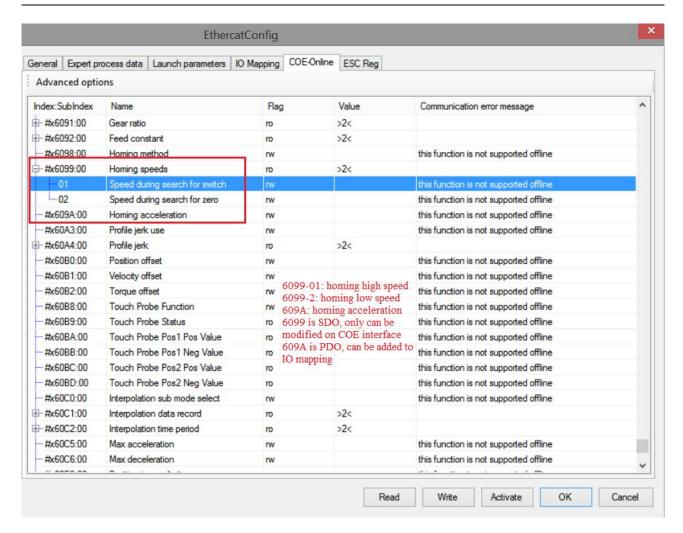
HM control mode related objects


Register	Explanation	Unit
RXPDO[0x6040]	Control word, modify control word to enable homing	-
RXPDO[0x6098]	Homing mode	-
RXPDO[0x609A]	Homing acceleration speed	Command
		unit/s²
RXPDO[0x6060]	The control mode is HM mode (i.e. homing mode), and its value is set to 6 when the motor is not enabled	-
SDO[0x6099]	Homing speed, modify online through COE-Online	Command
		unit/s

① Terminal assignment is performed. P5-22 is the positive limit setting address, and the default value is 1, related to servo terminal SI1. P5-23 is the setting address of the reverse limit, and the default value is 2, related to servo terminal SI2, P5-27 is the origin setting address, and the default value is 3, related to servo terminal SI3.

(2) Click [scan] or [add] in the EtherCAT interface, [general] interface please use default settings.


(3) 【Expert process data 】→ 【PDO list】 select 1600, 1A00, add 6098h in 1600.


EthercatConfig

Add Edit Delete Move up Move down homing mode								
Row	Index: subindex	Name	Value	Bits len	Error -> exit	Error -> jump	Next row	Notes
1	#x6060:00	Modes of operation	6	8			0	Op mode
2	#x60C2:01	Interpolation time period	100	8			0	Interpolation time period
3	#x60C2:02	Interpolation time index	-5	8			0	Interpolation time index

- (5) 【IO mapping】 default start address is HD10000, which can be changed if necessary.
- 6 After setting all the parameters, click 【write】 → 【activate】 → 【OK】. The parameters will take effect after the activation is successful.

- \bigcirc After the activation is completed, the slave station state machine (SD8021) will be from $1 \rightarrow 2 \rightarrow 4 \rightarrow 8$, 8 means OP status. At this time, both SDO and PDO can receive and send messages.
- 8 After the state is switched to OP, the homing speed and acceleration can be modified through COE-Online.

(9) Set the homing mode (6098h).

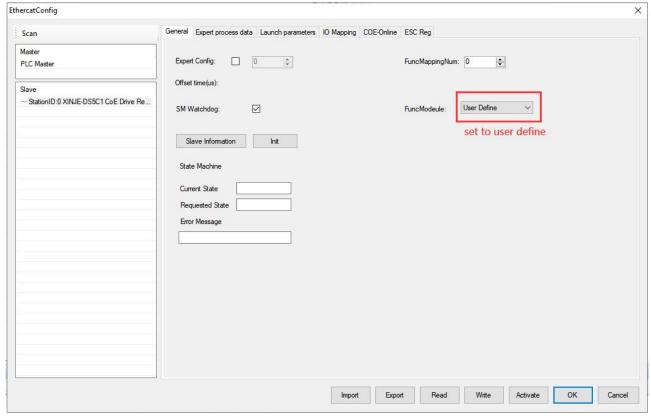
This setting range is $-2\sim37$ (currently supports methods $-2\sim14$, $17\sim30$, 33, 34, 35, 37).

① After enabling ON, HD10000 (6040h mapping) will go from $6 \rightarrow 7 \rightarrow 15$ to indicate the slave station's enabled state, and then HD10000 (6040h mapping) will go from $15 \rightarrow 31$ to enable the homing. During the homing process, if the origin signal is triggered, it will slow down and stop according to the corresponding way of homing. To homing again, first change 6040h to 15, and then HD10000 (mapping of 6040h) $15 \rightarrow 31$.

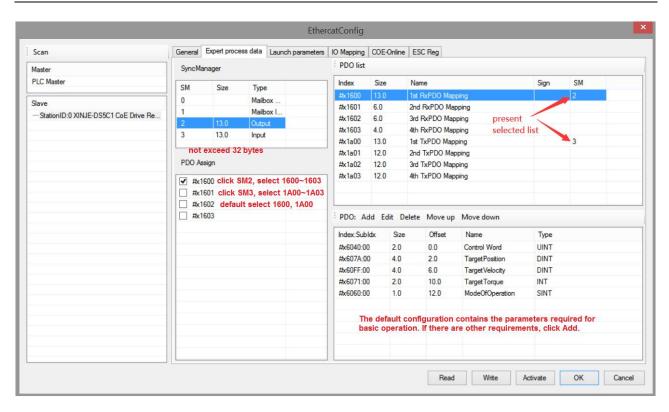
5) PP mode operation example

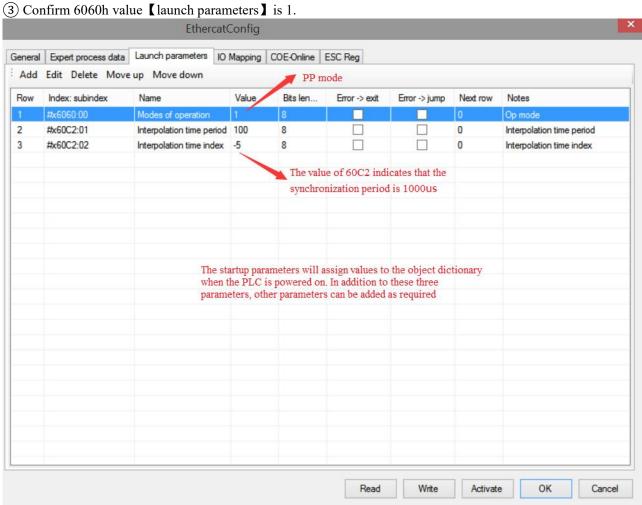
PP control mode related object (command • setting)

control mode related object (command • setting)				
Register	Explanation	Unit		
RXPDO[0x6040]	Control word	-		
RXPDO[0x6060]	Set to 1	-		
RXPDO[0x607A]	Target position	Command unit		
RXPDO[0x6072]	Max torque	0.1%		
RXPDO[0x607F]	Max Profile velocity	Command unit/s		
RXPDO[0x6080]	Max motor speed	r/min		
RXPDO[0x6081]	Profile velocity	Command unit/s		
RXPDO[0x6083]	Profile acceleration	Command unit/s ²		
RXPDO[0x6084]	Profile deceleration	Command unit/s ²		
RXPDO[0x60C5]	Max acceleration	Command unit/s ²		
RXPDO[0x60C6]	Max deceleration	Command unit/s ²		
RXPDO[0x6065]	Following error window	Command unit		
RXPDO[0x6066]	Following error time out	ms		
RXPDO[0x6067]	Position windows	Command unit		
RXPDO[0x6068]	Position window time	ms		

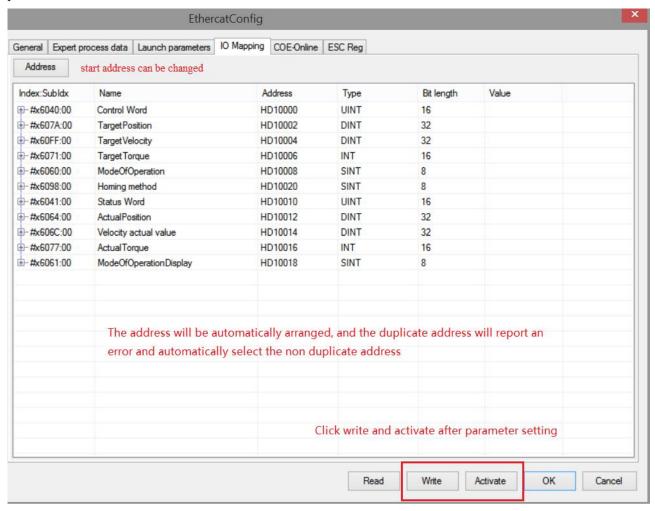

Note:

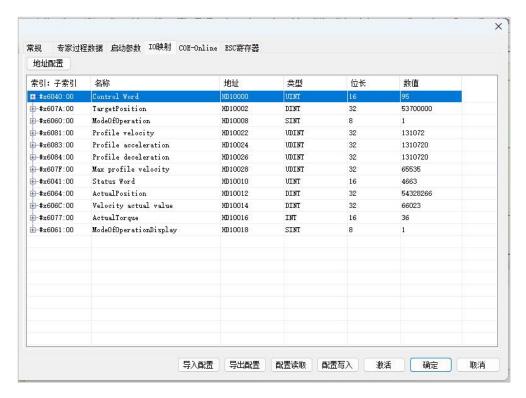
- (1) 6081h (profile speed) is limited by the smaller one of 607Fh (maximum internal speed) and 6080h (maximum motor speed).
- (2) Changing the set value of 607Fh (maximum internal speed) or 6080h (maximum motor speed) during the operation is not reflected in the operation.


pp control mode related object (command · monitor)


Register	Explanation	Unit
TXPDO[0x6041]	Status word	-
TXPDO[0x6063]	Position actual internal value	Command unit
TXPDO[0x6064]	Position actual value	Command unit
TXPDO[0x606C]	Speed feedback	Command unit /s
TXPDO[0x6077]	Actual torque	0.1%
TXPDO[0x60F4]	Following error actual value	Command unit

① Click 【scan】 or 【add】 in the EtherCAT interface, function module please set to user define in 【general】 interface.


(2) Click [Expert process data] \rightarrow [PDO list], select 1600, 1A00. PDO parameters associated with the mode can be added (1600 and 1A00 can not add more than 32 bytes respectively).

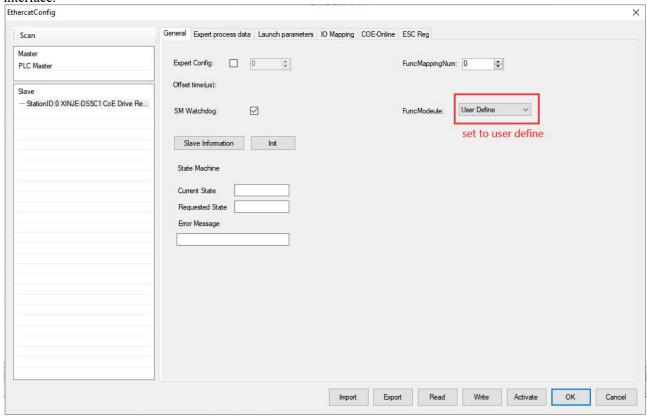


(4) 【IO mapping】 default start address is HD10000, which can be changed if necessary.

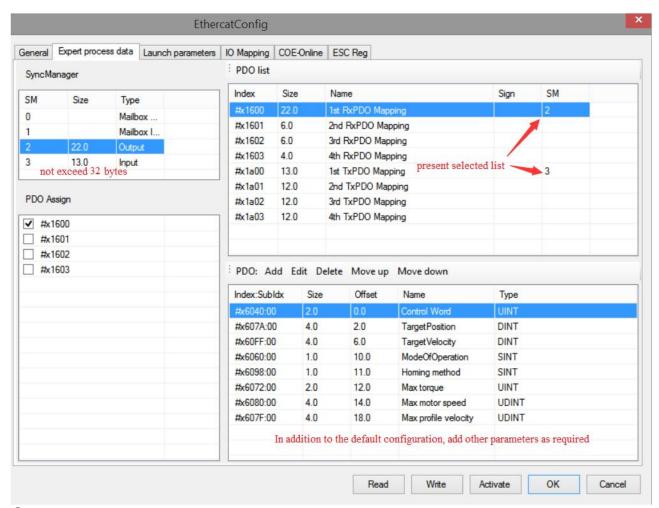
 \bigcirc After parameter configuration is completed, click \bigcirc write \bigcirc \bigcirc activate \bigcirc \bigcirc \bigcirc After activation, the parameters will take effect.

- 6 After the activation is completed, the slave station state machine (SD8021) will from $1 \rightarrow 2 \rightarrow 4 \rightarrow 8$, 8 means OP status. At this time, both SDO and PDO can receive and send messages.
- 7 Modify the control word 6040 (absolute mode: $6 \rightarrow 15 \rightarrow 31$, relative mode: $6 \rightarrow 79 \rightarrow 95$) to enable the slave station to move the motor by setting the target position, target speed, acceleration and deceleration and other parameters.
- (8) In PP mode, data can be monitored through I/O mapping address setting. For example, the control word of axis 1 can be modified through HD10000 (mapping of 6040h), the motor can be enabled or disabled, and the given position of current axis 1 can be monitored through HD10004 (mapping of 607Ah).

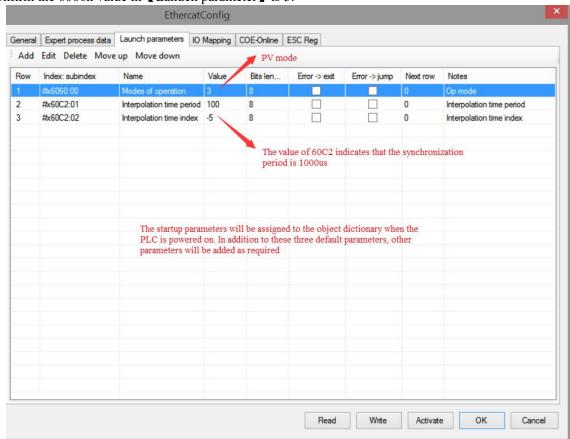
6) PV mode operation example


pv control mode related object (command · setting)

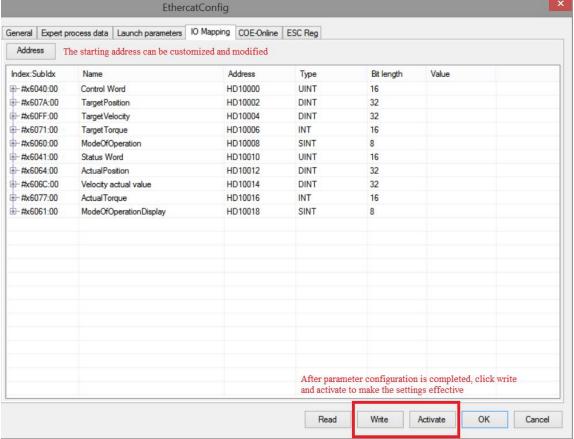
Register	Explanation	Unit
RXPDO[0x6040]	Control word	-
RXPDO[0x6060]	Set to 3	-
RXPDO[0x60FF]	Target velocity	Command unit/s
RXPDO[0x6072]	Max torque	0.1%
RXPDO[0x607F]	Max Profile velocity	Command unit /s
RXPDO[0x6080]	Max motor speed	r/min
RXPDO[0x6083]	Profile acceleration	Command unit /s ²
RXPDO[0x6084]	Profile deceleration	Command unit /s ²
RXPDO[0x60C5]	Max acceleration	Command unit /s ²
RXPDO[0x60C6]	Max deceleration	Command unit /s ²
RXPDO[0x606D]	Velocity window	Command unit /s
RXPDO[0x606E]	Velocity window time	ms
RXPDO[0x606F]	Velocity threshold	Command unit /s
RXPDO[0x6070]	Velocity threshold time	ms


pv control mode related object (command · monitor)

Register	Explanation	Unit		
TXPDO[0x6041]	Status word	-		
TXPDO[0x6064]	Position actual value	Command unit		
TXPDO[0x606C]	Velocity actual value	Command unit /s		
TXPDO[0x6077]	Torque actual value	0.1%		


① Click 【scan】 or 【add】 in the EtherCAT interface, function module please set to user define in 【general】 interface.

② Click 【Expert process data】→【PDO list】, select 1600, 1A00. PDO parameters associated with the mode can be added (1600 and 1A00 can not add more than 32 bytes respectively)



(3) Confirm the 6060h value in **[**Lanuch parameter **]** is 3.

(4) 【IO mapping】 The starting address can be customized and modified.

 \bigcirc After configuring the parameters, click [write] \rightarrow [activate] \rightarrow [OK], the parameters will take effect after the activation is successful.

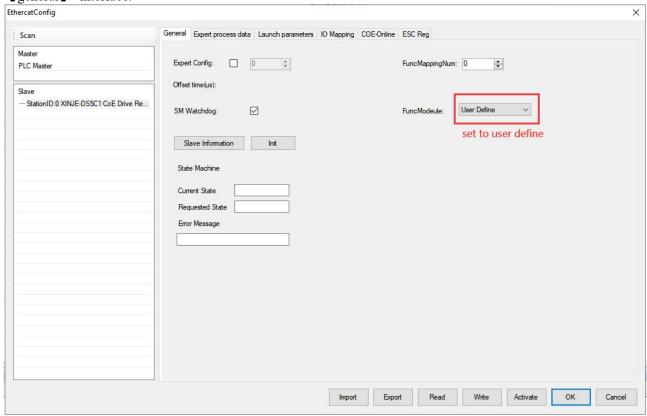
6 After the activation is completed, the slave station state machine (SD8021) will from $1 \rightarrow 2 \rightarrow 4 \rightarrow 8$, 8 means the OP status. At this time, SDO and PDO can receive and send messages

 \bigcirc Modify the control word 6040 (6 \rightarrow 15) to enable the slave station and move the motor by setting the target speed, acceleration and deceleration and other parameters

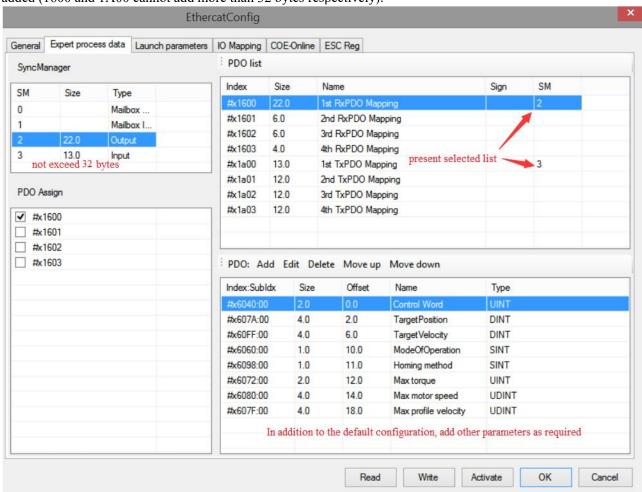
(8) In PV mode, data can be set and monitored through I/O mapping addresses. For example, the control word of axis 1 can be modified through HD10000 (6040h mapping) to enable or disable the motor. The actual position of the current motor on axis 1 can be monitored through HD10012 (6064h mapping), and the actual speed of axis 1 can be monitored through HD10014 (606Ch mapping).

索引:子索引	名称	地址	类型	位长	数值
⊕-#x6040:00	Control Word	Ж010000	UINT	16	15
#x607A:00	TargetPosition	HD10002	DINT	32	0
#x6060:00	ModeOfOperation	Ж010008	SINT	8	3
#-#x6081:00	Profile velocity	HD10022	UDINT	32	0
#-#x6083:00	Profile acceleration	HD10024	UDINT	32	131072
#-#x6084:00	Profile deceleration	HD10026	UDINT	32	131072
#x607F:00	Max profile velocity	Ж010028	UDINT	32	131072
#x60FF:00	Target velocity	ЖD10030	DINT	32	131072
#x6071:00	Target torque	Ю10032	INT	16	0
#x6041:00	Status Word	НD10010	UINT	16	1591
#-#x6064:00	ActualPosition	Ж010012	DINT	32	323176471
#-#x606C:00	Velocity actual value	Ю10014	DINT	32	131039
#-#x6077:00	ActualTorque	Ж10016	INT	16	55
±-#x6061:00	ModeOfOperationDisplay	HD10018	SINT	8	3

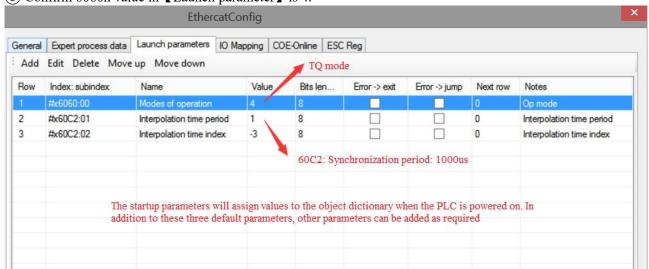
7) TQ mode operation example

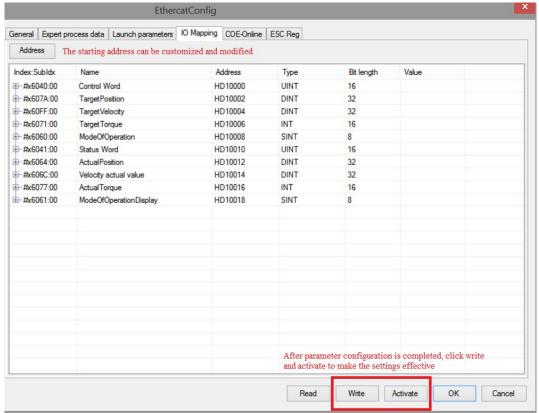

TQ control mode related objects (command · setting)

Register	Note	Unit
RXPDO[0x6040]	Control word	-
RXPDO[0x6060]	Control mode is tq (Profile torque control mode), set its value to 4	-
RXPDO[0x6071]	Target torque given	0.1%
RXPDO[0x6072]	Max torque	0.1%
RXPDO[0x6080]	Maximum motor speed	r/min
RXPDO[0x6087]	Set torque slope	0.1%/S
RXPDO[0x6088]	Set the type of torque profile to use	-


TQ control mode related objects (command · monitoring)

Register	Note	Unit
TXPDO[0x6041]	Status word	-
TXPDO[0x6064]	Position feedback (actual motor position)	Command unit
TXPDO[0x606C]	Speed feedback	Command unit /s
TXPDO[0x6077]	Actual torque	0.1%


① Click 【scan】 or 【add】 slave on EtherCATconfig interface, function module please set to user define in 【general】 interface.

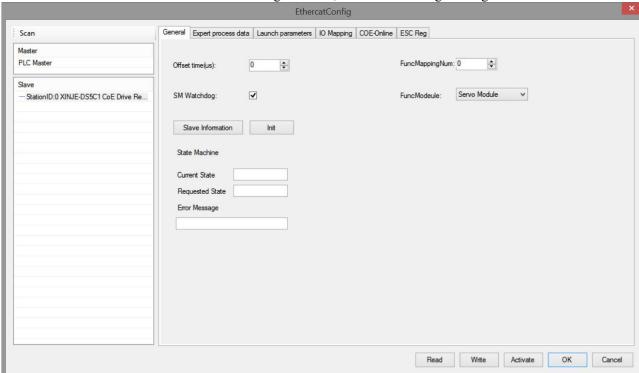

② Select 1600, 1A00 in $\{$ expert process data $\} \rightarrow \{$ PDO list $\}$, PDO parameters associated with the mode can be added (1600 and 1A00 cannot add more than 32 bytes respectively).

3 Confirm 6060h value in 【Launch parameter】 is 4.

- 4 【IO mapping】 the starting address can be customized and modified.
- \bigcirc After configuring the parameters, click [write] \rightarrow [activate] \rightarrow [OK], the parameters will take effect after the activation is successful.

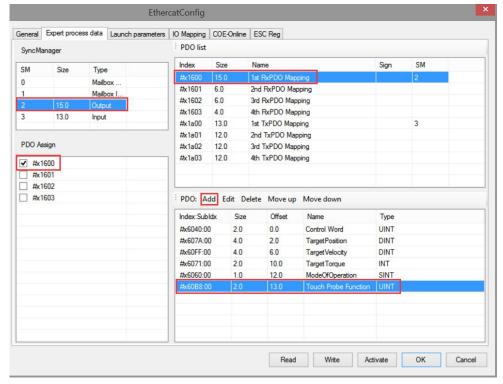
- **(6)** After activation, the slave station state machine (SD8021) will change from $1 \rightarrow 2 \rightarrow 4 \rightarrow 8$, 8 indicating the OP state. At this time, both SDO and PDO can receive and send messages.
- $\overline{7}$ Modify the control word 6040 (6 \rightarrow 15) to enable the slave station to move the motor by setting the target torque, torque slope and other parameters.
- (8) In TQ mode, data can be set and monitored through I/O mapping addresses. For example, the control word of axis 1 can be modified through HD10000 (6040h mapping) to enable or disable the motor. The actual torque of the current motor on axis 1 can be monitored through HD10016 (6077h mapping), and the torque slope of axis 1 can be set through HD10038 (6087h mapping).

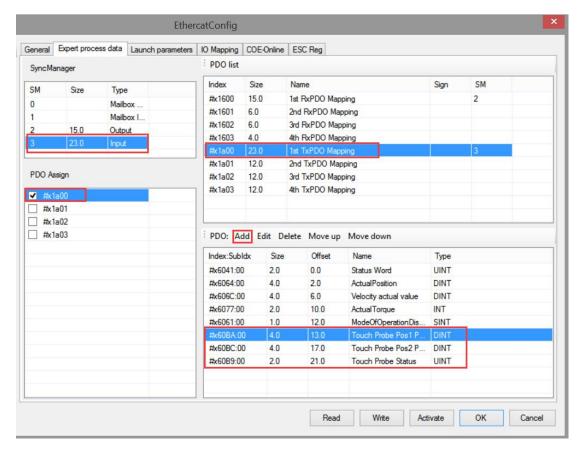
PLC1-自由监控1				
监控窗□ ▼ 添加	修改 删除 全部	部删除 上	移下移量	置顶 置底
名称	监控值	类型	映射地	注释
— ♦ HD10000	15	INT	单字	Station ID:0,#x6040:0,Control Word
— ♦ HD10016	41	INT	单字	Station ID:0,#x6077:0,ActualTorque
— ♦ HD10038	50	UDINT	双字	Station ID:0,#x6087:0,Torque slope
— ♦ HD10012	38084204	DINT	双字	Station ID:0,#x6064:0,ActualPosition
—♦ HD10014	132188	DINT	双字	Station ID:0,#x606C:0,Velocity actual .


8) Probe function example (take DS5C2-20P4-PTA as an example)

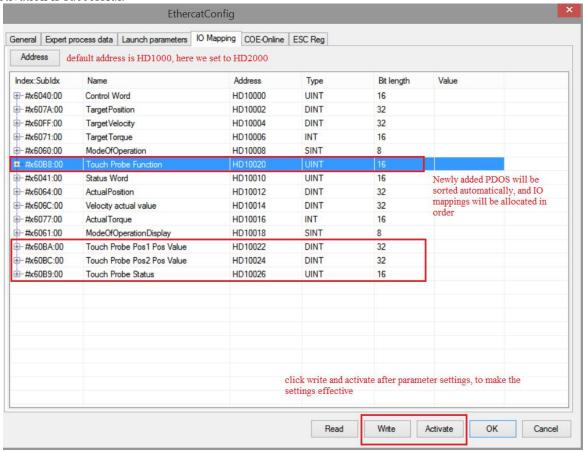
Probe function related object

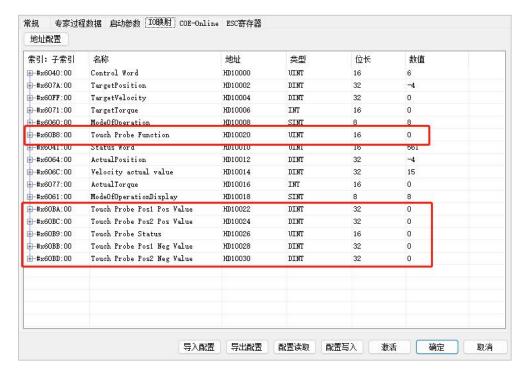
Index	Sub index	Name	Unit
60B8h	00h	Probe function settings	-
60B9h	00h	Indicates the status of the Touch probe function	-
60BAh	00h	Indicates the clamping position of the rising edge of Touch probe1	Command unit
60BBh	00h	Indicates the clamping position of the falling edge of Touch probe1	Command unit
60BCh	00h	Indicates the clamping position of the rising edge of Touch probe2	Command unit
60BDh	00h	Indicates the clamping position of the falling edge of Touch probe2	Command unit


① External wiring and probe terminal assignment: P5-62 and P5-63 are used for terminal assignment of probe function, probe 1 is assigned to SI1, probe 2 is assigned to SI2, 1 is written in P5-62 when SI1 is assigned, and 2 is written in P5-63 when SI2 is assigned.


2 Click [scan] or [add] slave on EtherCATconfig interface, use default settings for [general] interface.

③ When the level signal connected to the driver SI1 or SI2 jumps, the probe function is triggered, and the probe value is locked in the corresponding COE object words 0x60BA to 0x60BD. When reading the probe value, you need to add the corresponding probe value object (0x60BA-0x60BD) to TxPDO to facilitate data collection.


Select 1600, 1A00 in \mathbb{L} Expert process data $\mathbb{L} \to \mathbb{L}$ PDO list \mathbb{L} , add 60B8h in 1600, add 60BAh in 1A00, 60BCh (take the rising edge of the two probe signals as an example. If the falling edge is collected, 60BBh and 60BDh can be added).



(4) 【IO mapping】 The default starting address is HD10000, which can be changed if necessary

 \bigcirc After configuring the parameters, click [write] \rightarrow [activate] \rightarrow [OK], the parameters will take effect after the activation is successful.

- 6 After activation, the slave station state machine (SD8021) will change from $1 \rightarrow 2 \rightarrow 4 \rightarrow 8$, 8 indicating the OP state. At this time, both SDO and PDO can receive and send messages.
- 7) After enabling the slave station, the probe function can be activated by modifying HD10024 (60B8h mapping).
- (8) After activating the probe function, the rising edge clamping value of probe 1 can be monitored through HD10022 (60BAh mapping), the rising edge clamping value of probe 2 can be monitored through HD10024 (60BCh mapping), the current probe status can be monitored through HD10026 (60B9h mapping), the current actual position of the motor can be monitored through HD10012 (6064h), and the current actual speed can be monitored through HD10014 (606Ch mapping).

监控窗口→添加	修改 删除 全部	別除 上	移 下移 置顶	置底
名称	监控值	类型	映射地址/字长	注释
— ♦ мо	ON	ВП	位	使能
— ♦ M1	ON	вп	位	使能状态
— ♦ D10	0	UINT	单字	控制模式
— ♦ M300	OFF	вп	位	绝对运行指令
— ♦ D300	1000000000	LREAL	四字	目标绝对位置
— ♦ D304	10000	LREAL	四字	目标速度
— ♦ D308	5000	LREAL	四字	加速度
− ♦ D312	5000	LREAL	四字	减速度
− ♦ D316	100	LREAL	四字	加加速度
− ♦ M302	OFF	ВП	位	绝对定位完成状态
− ♦ M200	ON	ВП	位	探针功能
- ♦ M310	ON	вп	位	探针信号
− ♦ Y12	OFF	вп	位	探针SII信号状态
- ♦ SM11	ON	ВП	位	10ms 时钟脉冲: 5ms ON 5m
− ♦ M310	ON	вп	位	探针信号
− ♦ HD354	99140	LREAL	四字	探针锁存位置
- ♦ HD358	9965	LREAL	四字	探针锁存速度
− ♦ HD400	99140	LREAL	四字	位置存储寄存器
-♦ HD10012	466533	DINT	双字	Station ID:0,#x6064:0,Actual

11.2 Beckhoff TWINCAT and Xinje DS5C2

Beckhoff TwinCAT control software is used as the master station and Xinje servo is used as the slave station to realize EtherCAT motion control.

11.2.1 System configuration

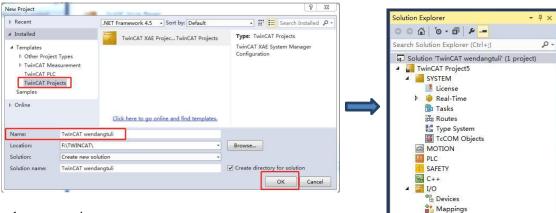
Name	Model	Quantity	Explanation
Upper			Application version used in this
computer	TWINCAT XAE(VS 2013)	1	example:
software			TC31-FULL-Setup.3.14022.27
Xinje servo	DS5C2-41P0-PTA	1	
Network cable	JC-CA-3	gama	For connection between
Network cable	JC-CA-3	some	computer and servo driver

11.2.2 System topology

DS5C2 servo driver has two communication network ports, which follow the principle of "bottom in and top out" shall be followed when connecting. The master station must be connected with the network port under the CN1 port of the first servo, and then the network port above the first servo is connected with the network port below the second servo, and so on.

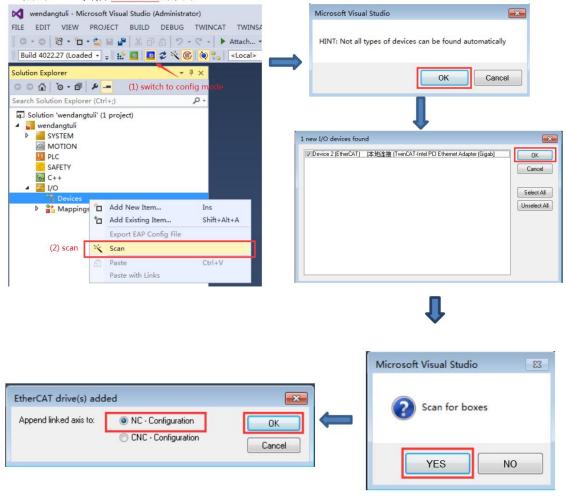
11.2.3 Commissioning steps:

1) Add XML file

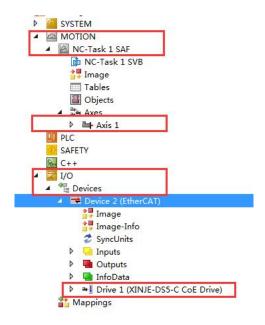

Before opening the software operation, we need to copy the DS5C2 XML file to the TwinCAT installation directory, and the default path is C:\TwinCAT\3.1\Config\Io\EtherCAT.

2) New project

Open the TwinCAT XAE(VS 2013) software and new a project.

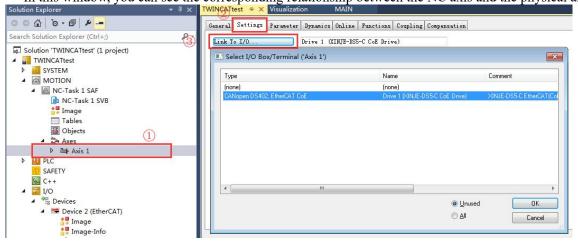

(1)FILE—NEW—Project:

(2) Select TwinCAT Project, enter the project name and the project saving path, and click OK. The following interface will appear:

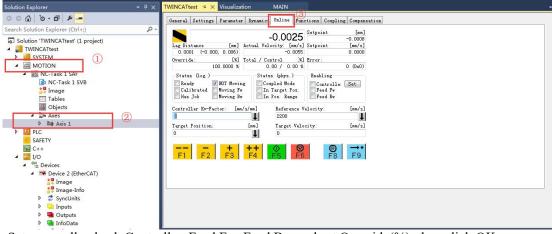

3) Hardware scanning

If the controller is not in config mode, click to switch the controller to config mode first. Then right click "Device" and click "Scan" to scan the slave station of EtherCAT.

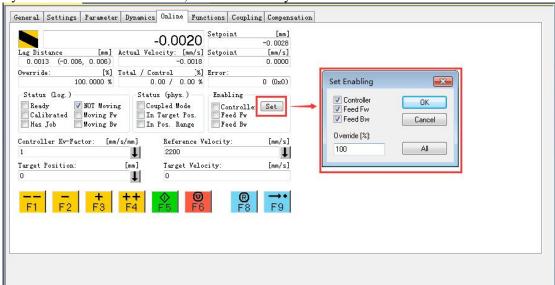
Click "NC Configuration".


After the scanning is completed, Axis1 can be seen in "Motion-NC axis", corresponding to the servo motor connected to the servo driver, and DS5C2 can be seen in the "Device".

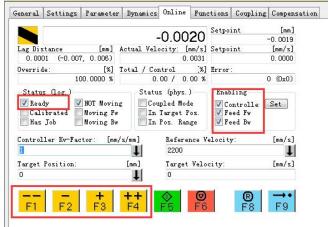
4) Connect NC axis and physical axis


Method 1:Click "Axis1-Settings-Link to I/O ..." to select the physical axis associated with the NC axis. This link will be automatically added when scanning the hardware.

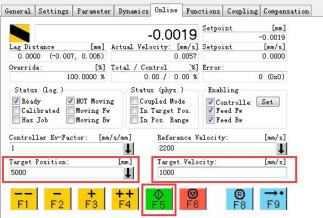
Method 2: Manually right click Axis and click Append axis. Link the NC axis to the physical axis manually. In this window, you can see the corresponding relationship between the NC axis and the physical axis

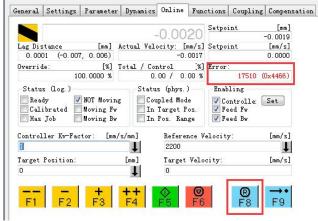

5) Debugging through NC-Online interface

(1)Switch TwinCAT to the running mode, and then click "MOTION- Axis1- Online" to debug the servo axis. (Note: if you don't see the current position of the shaft in the "Online", please make sure that the motor model addition and activation configuration are completed normally.)

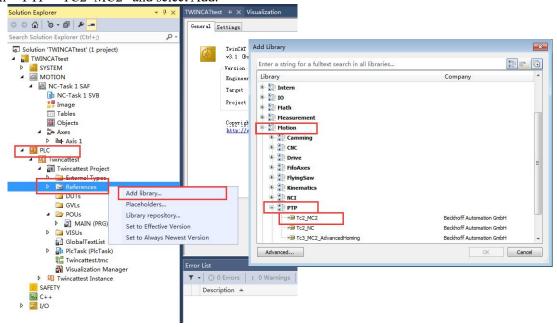


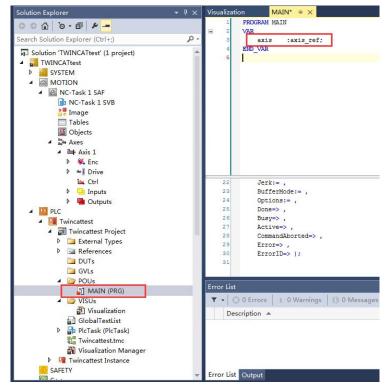
(2) Click Set, manually check Controller, Feed Fw, Feed Bw and set Override(%), then click OK.


Or directly click "All" to enable the axis, and automatically set the Override to 100%.

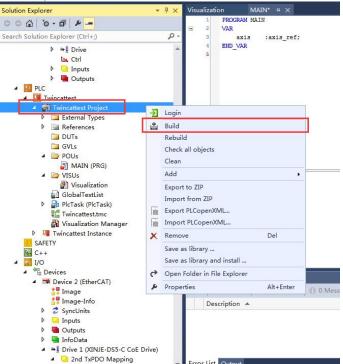

(3) If the Ready status is checked, it means that the motor is enabled. Then the axis can be inched through F1 \sim F4. The inching speed is set in the "Manual Velocity" in the "Parameter". The default speed is 100mm/s and 600mm/s, respectively corresponding to slow inching and fast inching.

(4) After setting "Target position" and "Target Velocity", press F5 to realize position control. The motor will move to the target position with the set target. This positioning is absolute position positioning, and F6 can be used to stop during positioning.

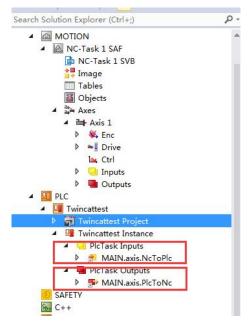

- (5) When the NC reports an error, there will be an error code in the "Error".
- F8 is the reset button. Press F8 to reset the error.
- F9 is the origin finding button. After pressing F9, the axis position will change to 99999... And move slowly. However, the origin signal requires external hardware signal, which cannot be captured in the Online window. Therefore, F9 is not used to return to the origin generally, but realized through programming in the program.


Note: Refer to "TC3 training material V1.1.0" for more single axis debugging functions.

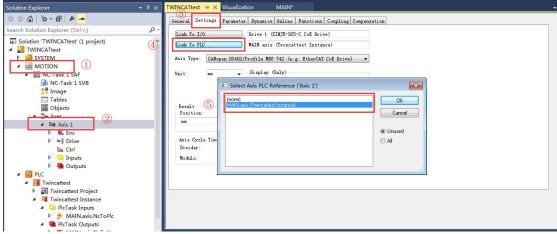
- 6) Control DS5C2 servo motor by PLC control programming
- (1)Add motion control library files and axis type variables


Create a new project under PLC and click "PLC-References-Add library...". In the pop-up dialog box, find "Motion -- PTP -- TC2 MC2" and select Add.

Click POUs -MAIN(PRG) ,create an Axis_ref type at the main program. Axis_ Ref is a structure, mainly used for data exchange between NC and PLC. It also contains some other structures. We call this Axis_ref variable the axis variable.



After the program is written, compile it to see if it is wrong. The project of this instance is named Twincattest, so find Twincattest project, right-click it, and then select "Build" and click it.


The corresponding variables can be seen in the Instance directory after compile successfully.

After Build successful compilation, you can bind two variables under PlcTask Inputs and PlcTask Outputs respectively.

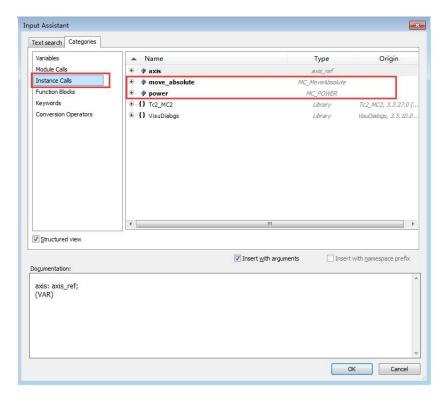
(2)Connect variable between NC and PLC

Click "Motion-Axes", double click Axis 1, find "Settings-Link to PLC..." from the interface on the right. Link Axis 1 to the corresponding PLC, and then NC and PLC can interact with each other through this link.

(3)Call function block to control the axis motion

On the POUs-MAIN (PRG) interface, declare one MC_POWER function block and one MC_MoveAbsolute function block, where MC_Power is used to control shaft enable, MC_ Moveabsolute is used to control the absolute position of the axis.

```
PROGRAM MAIN

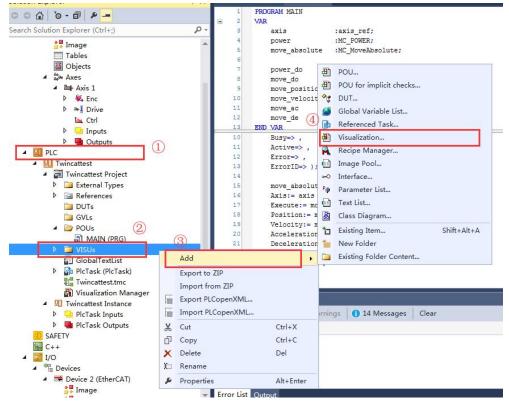

VAR

axis :axis_ref;

power :MC_POWER;

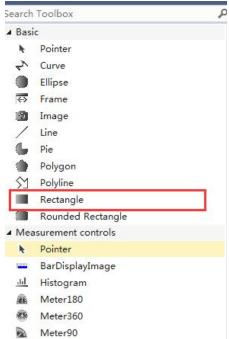
move_absolute :MC_MoveAbsolute;
```

Press F2 in the program writing window and select power and move_absolute in "Categories——Instance Calls" to call the defined function block into the program.



Fill in all the parameters in the function block. Enable represents the enable position, Enabled_Positive represents allowing forward rotation, Enabled_Negative represents allowing reverse rotation, Override represents the speed ratio, Axis represents the corresponding axis, Position represents the positioning position, Velocity represents the positioning speed, Acceleration represents acceleration, and Deceleration represents deceleration. Additionally, declare two boolean type variables power_do and move_do as trigger bits for the enable and absolute position motion function blocks, and declare an Lreal type variable as the position, velocity, and acceleration/deceleration

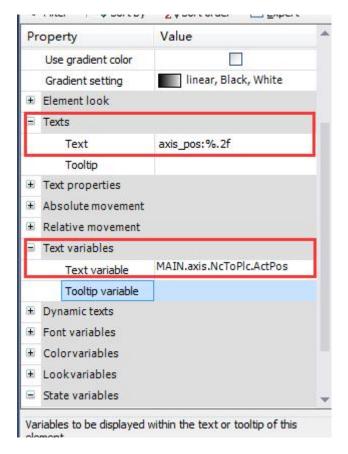
for absolute position motion.


```
MAIN ⊅
                             PROGRAM MAIN
                            VAR
                                                :axis_ref;
                                                :MC_POWER;
                                move absolute
                                                :MC MoveAbsolute;
                                                :BOOL:
                                power do
                                 move_do
                                                :BOOL;
                                 move_position
                                                : LREAL;
                                                : LREAL;
                                move_velocity
                                                : LREAL;
                                move ac
                       12
                                move de
                                                : LREAL;
                       13
                             END VAR
                       14
                                                   power (
move absolute (
                                                        Axis:= axis,
Axis:= axis ,
                                                        Enable:= power do,
Execute:= move_do ,
                                                        Enable Positive:=TRUE ,
Position:= move_position,
                                                        Enable Negative:=TRUE ,
Velocity:= move_velocity,
                                                        Override:= ,
Acceleration: = move ac,
                                                        BufferMode:= ,
Deceleration:= move de,
                                                        Options:= ,
Jerk:= ,
                                                        Status=> ,
BufferMode:= ,
                                                        Busy=> ,
Options:= ,
                                                        Active=> ,
Done=> ,
                                                        Error=> ,
Busy=> ,
                                                        ErrorID=> );
Active=> ,
```

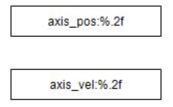
Right click "PLC-VISUs", click Add from the pop-up menu, and then select Visualization from the new menu to create a visual interface.

Select the rectangle in the toolbar of the added VISU interface and drag a control.

Double click the rectangle box control to set.

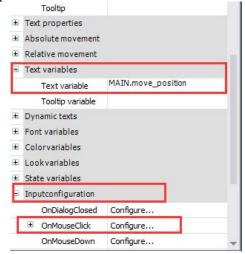


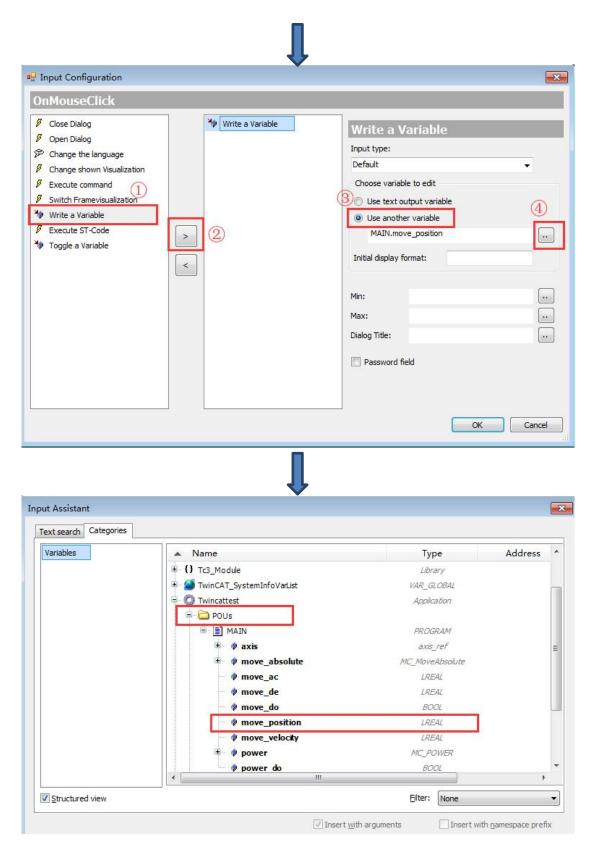
Double click the control, and set parameters in Property as shown in the figure.


Set Texts—Text-axis_ pos: %.2f, %.2f represents the data type of floating-point number, display the value of the associated variable (that is, the variable pointed to by "Text variables—Text variable", and only two decimal places are reserved.

Enter MAIN.axis.NcToPlc.ActPos in Text variable, indicating that the control points to the actual position in the

axis variable.

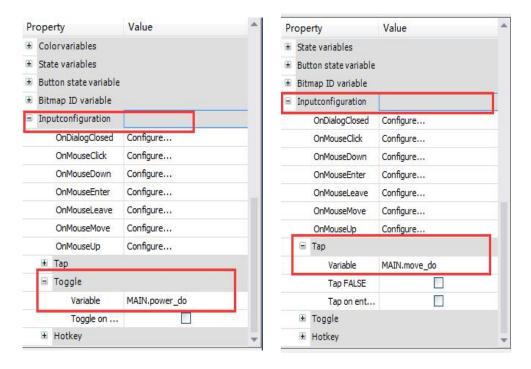



Make another control to represent the current speed of the shaft, enter MAIN.axis.NcToPlc.ActVelo in Text variable.

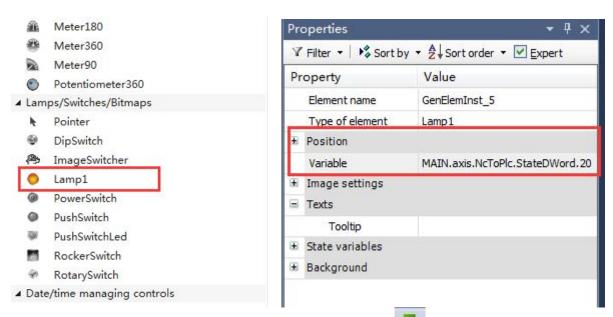
Add a rectangular control to input the target position value of the absolute position movement.

The specific operations are as follows: create a rectangular control, and enter MAIN.move_position in Text variable(lreal type variable added in the program), click "Inputconfiguration - OnMouseClick", select "Write a Variable" in the pop-up interface, click ">" to add the function, and select "Use another variable" on the right to point to the variable MAIN.move position.

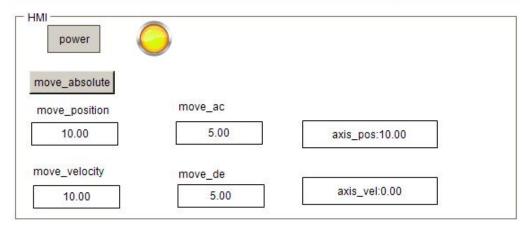
In the same way, create the controls of speed, acceleration and deceleration pointing to the absolute position.



Create two button controls to control the enable and axis motion.



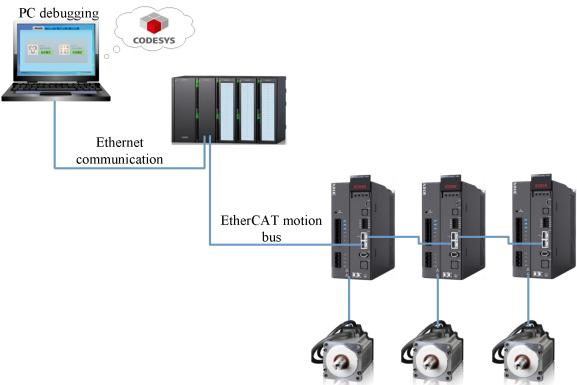
Enter "MAIN.power_do" in "Inputconfiguration—Toggle—Variable", click once to set 1, and click again to set 0.


Enter "MAIN.move_do" in "Inputconfiguration——Tap——Variable" of the trigger control of axis motion_ Do, set 1 only when clicked, and 0 when released.


Create an indicator control to show whether the power function block is enabled successfully. First, drag an LED icon from the Toolbox on the right, and then bind the "Position——Variable" to the MAIN.axis.NcToPlc.StateDWord.20 variable, where StateDWord ".20" represents the enabled state of the axis variable.

After the program is written, it needs to be activated, and then click Login to run the program. Click the run button to see the value of the specified variable in the visual interface.

Click move Position and other input type controls can modify the value of the variable in real time.

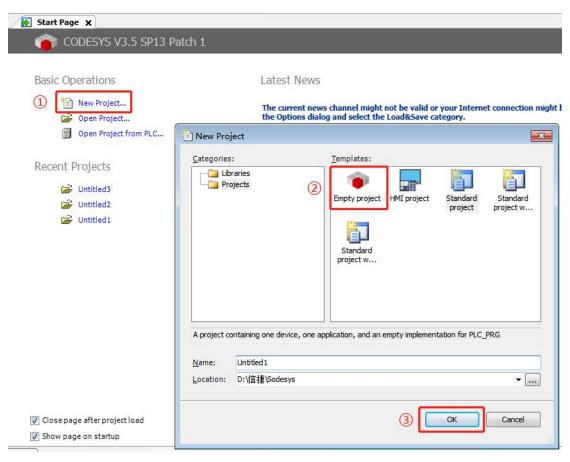

11.3 CODESYS and XINJE DS5C2 Ethercat communication example

This example will explain how Codesys motion control software realizes EtherCAT motion control when it is used as EtherCAT master station (Xinje XS3 series PLC is only used as a hardware platform) and Xinje DS5C2 series servo is used as slave station.

11.3.1 System topology

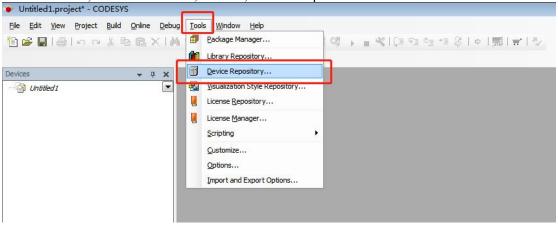
Name	Model	Quantity	Note
Software	CODESYS	1	Software version: V3.5 SP13
			Patch 1
Hardware	XS3 series PLC	1	
Servo	DS5C2-41P0-PTA	3	
Network cable	JC-CA-3	Some	Connect PC and servo

11.3.2 System topology

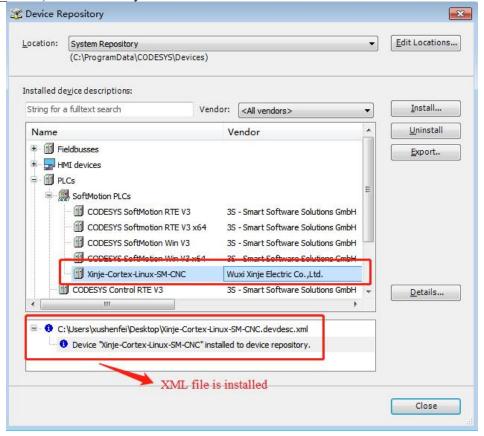

This is a Codesys control system based on traditional hard PLC. In this scheme, the PLC development system generally runs on an ordinary PC, while the traditional hard PLC only serves as a hardware platform. The real-time core of the soft PLC is installed in the traditional hard PLC, and the system program compiled by the development system is downloaded into the hard PLC. The control system diagram is shown in the above figure.

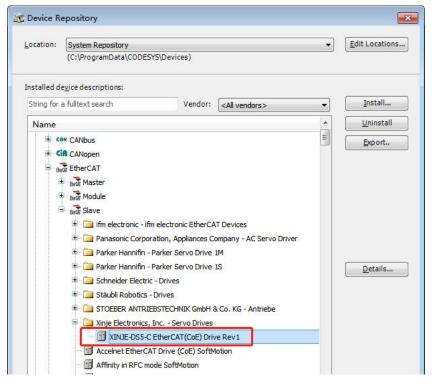
XS3 series PLC has upper and lower network ports. The upper network port is Ethernet/IP, which is used to connect the Codesys upper computer. The lower network port is an EtherCAT connection port, which is used to connect Xinje DS5C2 series servo to realize EtherCAT communication. The two communication network ports of Xinje DS5C2 series servo drivers should follow the principle of "bottom in and top out".

11.3.3 Debugging steps

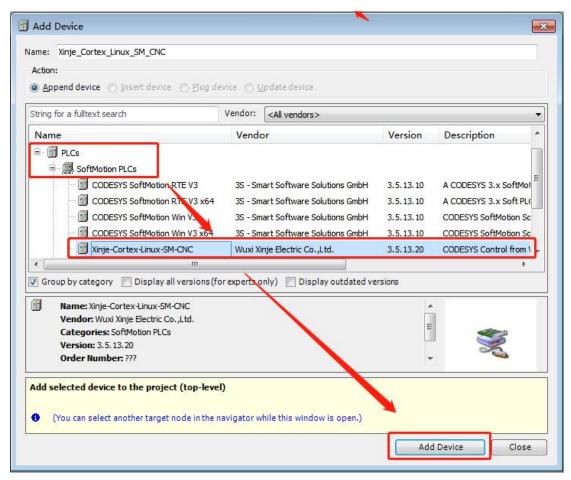

1)New project

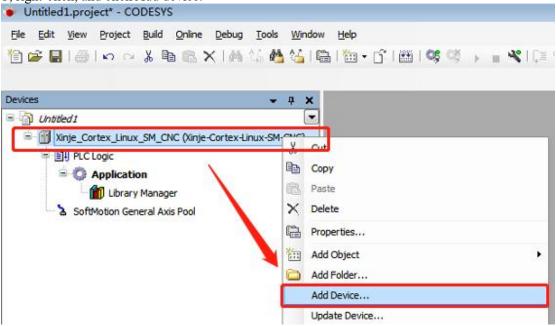
Double click to open Codesys. Click New Project, input project name and save path.


2)Add XML file

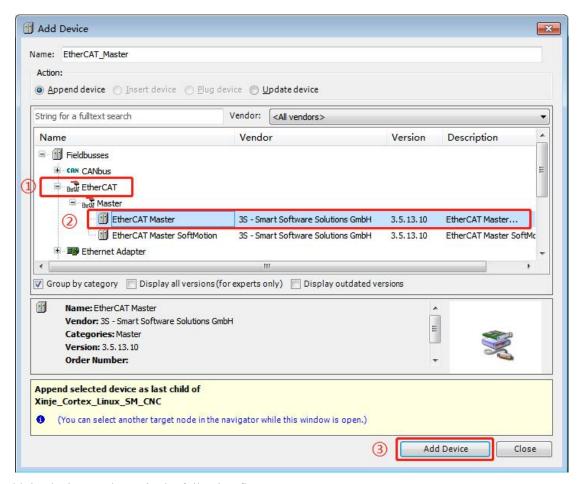

Open Tools/device repository, add XML file of master and slave station. First, add the XML file of the master station device. Click Tools -- device repository in turn, click install in the pop-up dialog box, select the path where the XML file is located, find the XML file, select it, and click open.

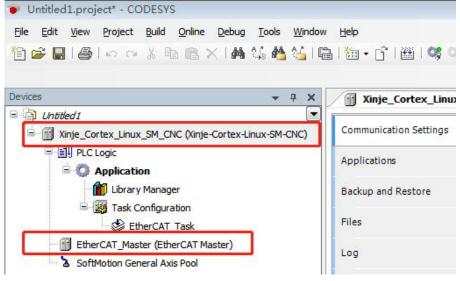
After opening, the installation is completed, as shown in the following figure. Similarly, install the slave XML file (Xinje-DS5-C_rev1.1) in the same way.



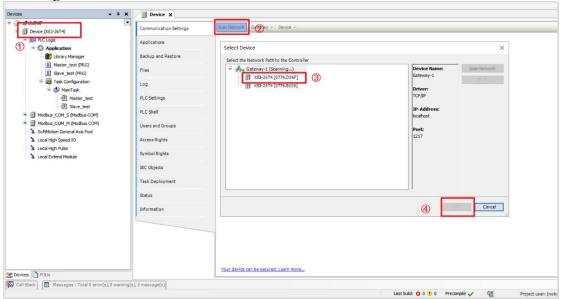

3)Add master station device

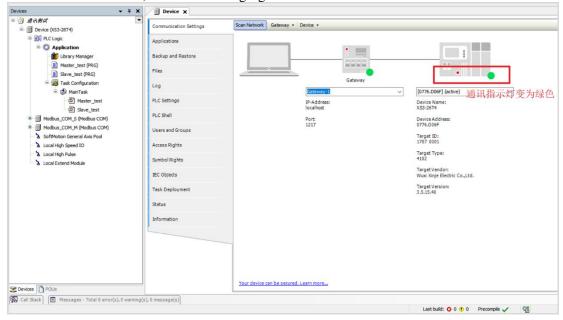
Right click Untitled, click Add Device, select PLCs--SoftMotion PLCs--Xinje -Cortex-Linux-SM-CNC, click Add Device to add the PLC.




After adding a PLC, the device manager will appear on the right side of the interface. Select Xinje – Cortex Linux SM CNC, right-click, and click Add device.

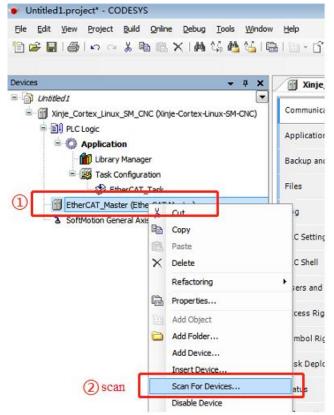
Select "EtherCAT / master/ EtherCAT master" in the "add device" dialog box, and finally click Add device.


Add the device, as shown in the following figure:

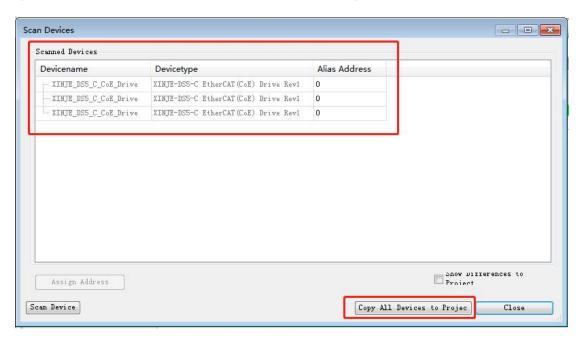

4)Gateway communication settings

Double click Xinje_ Cortex_ Linux_ SM_ CNC, click Scan netwook in the communication settings tab, search for PLCs in the same network segment, and click OK after finding them. As shown in the figure below, the equipment name of the PLC is XINJE-XS3.

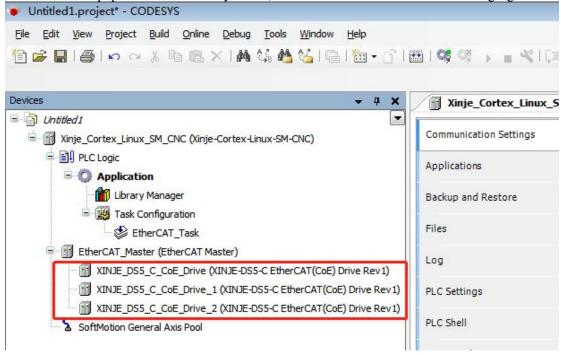
Note: Ethernet connection requires that the IP address of the connected device (PC) and the IP address of the PLC are in the same network segment, so confirm whether the IP address setting of the PC meets the requirements before connecting.



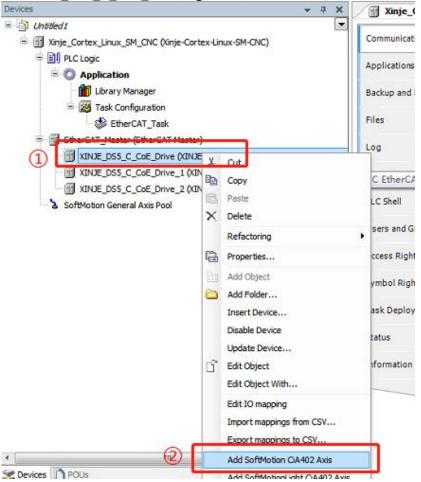
After successful communication, see the following figure:



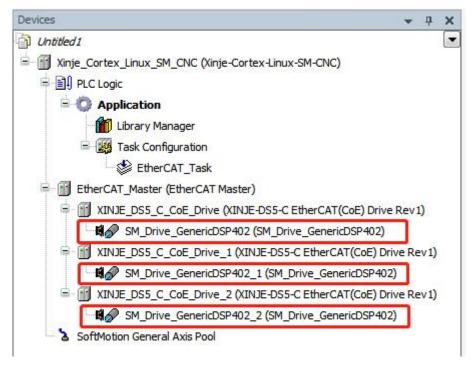
5)Scan the slave station device


In the device engineering bar, right-click EtherCAT Master, click Scan for devices.

In this example, three DS5C2 series servos are connected. The scanning results are shown in the figure below. Click Copy All to Project to add all the slave stations scanned to the project.

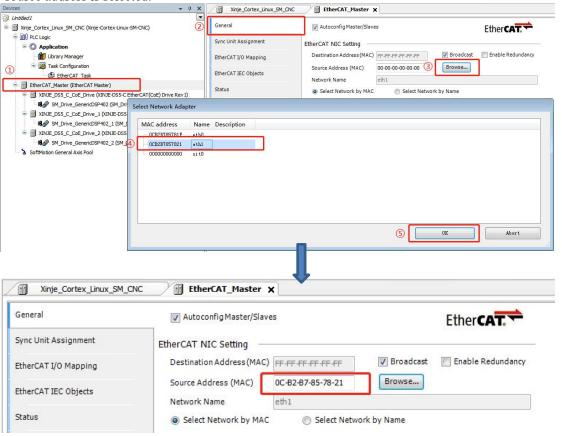


After the slave station equipment is successfully added, the "devices" is shown in the following figure.

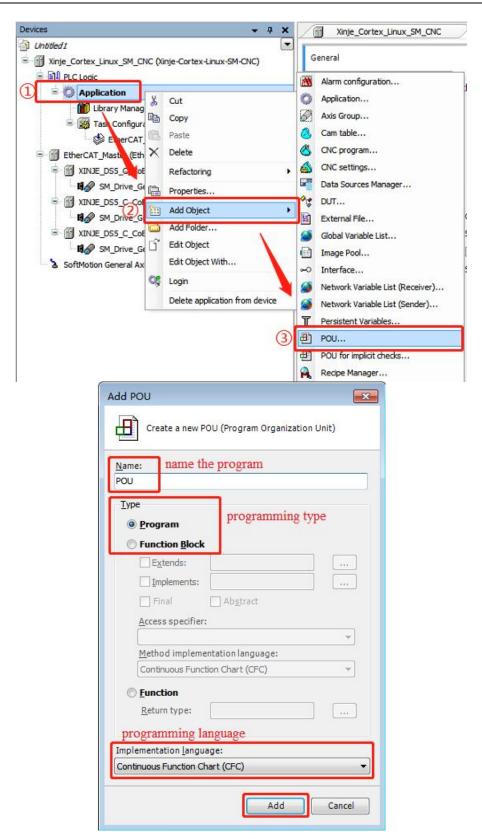


6)Add motion control axis

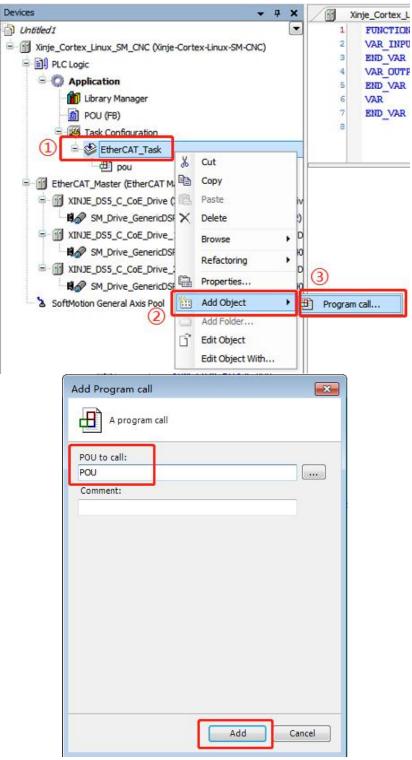
Select slave axis device XINJE DS5 C CoE Drive, right-click, click Add SoftMotion CiA 402 Axis.



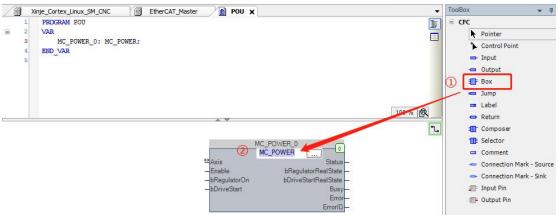
Similarly, add an axis for each slave station. After adding, it is shown in the following figure:


7)Master station device select source address

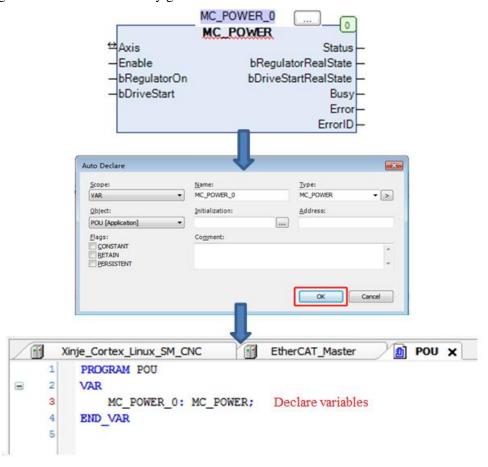
Double click "EtherCAT_Master", click Browse... in general tab, select corresponding MAC address, click OK, now the source address is selected.


8) Make the program

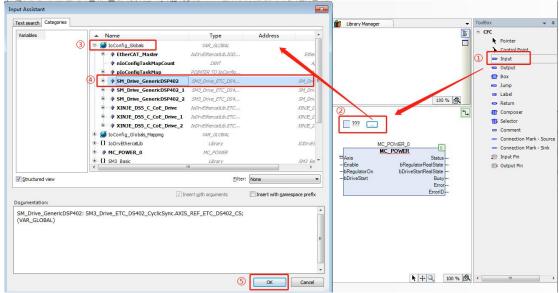
Add POU. Right click application in the devices column and select Add object -- POU. Name the POU to be added and select the programming method, then click Add. In this example, the form of continuous function diagram (CFC) is selected for programming.

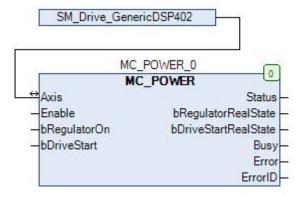

Double click the added POU to program in the POU interface.

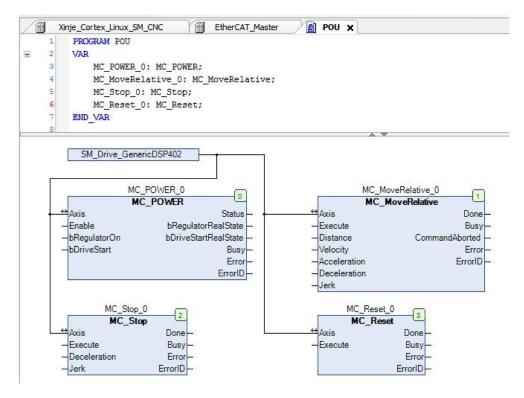
Note: POU should be added to the task, because subsequent compilation commands only compile the programs added to the task. If the created POU is not added to the task, the compile command does not perform syntax check for the POU. Right click EtherCAT_Task, select Add object -- Program call, fill in "POU" in the dialog box "Add Program Call", and finally click Add.



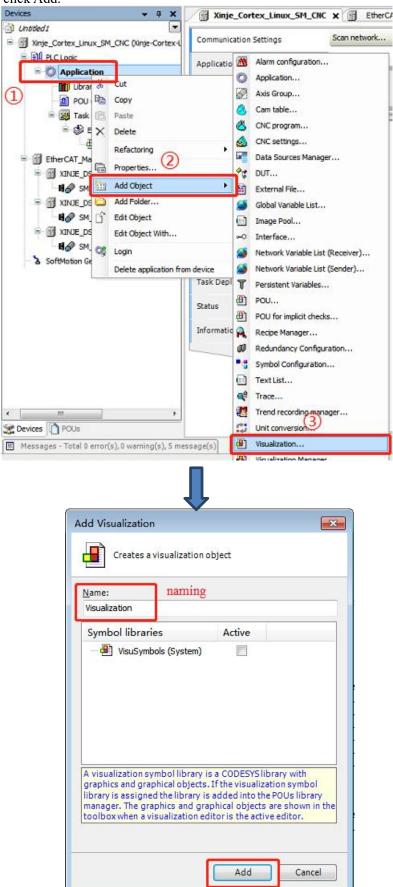
Call the function block


On the POU interface, calling an MC_POWER function block to control the axis enable. Select the box in the toolbar, drag it into the programming interface, and enter MC_POWER.

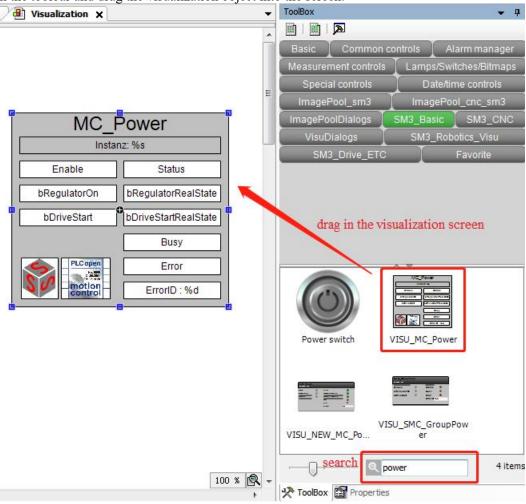

Link this function block to the variable of the first slave station axis, as shown in the figure, enter MC_POWER_0, the programming interface will automatically generate variables to be declared.


Add input and link the function block to the first slave station axis. Select Input, drag it in the programming interface, double click this object, click in the Input Assistant, click OK.

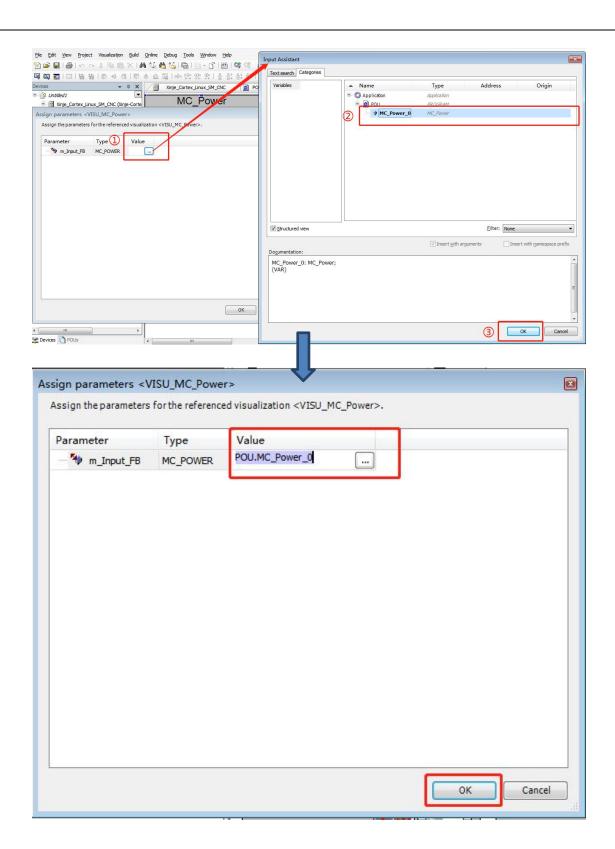
Connect the added input function block and the enable function block with wires.



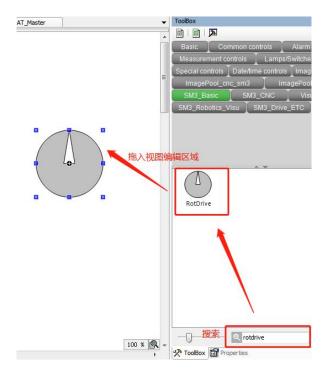
Similarly, continue to add the relative movement function block MC_MoveRelative, Stop function block MC_Stop, Reset function block MC_Reset. The procedure is shown in the figure below.


9) Add visualization

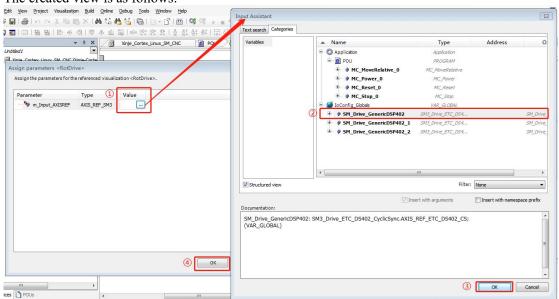
Right click application in the devices column and select Add object - visualization. After naming and selecting the programming method, click Add.

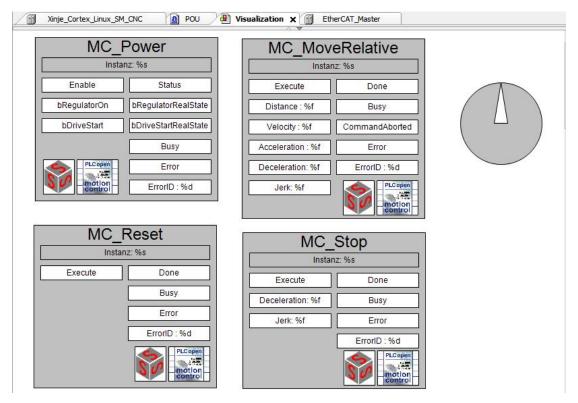

Double click visualization in the devices column to add the required visualization. For example, you can search

for power in the toolbar and drag the visualization object into the screen.

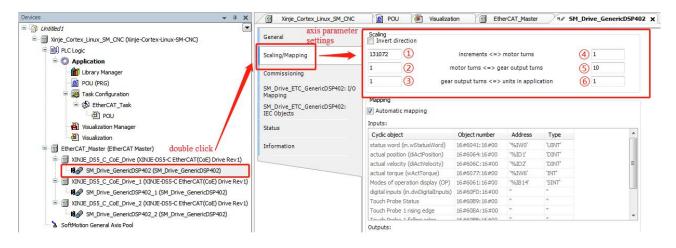


When you drag the control object into the editing area, the dialog box Assign parameters < VISU_MC_Power> will pop up automatically, link the control object to the corresponding declared variable. Double click the value column.


Click , at this time, select the declared variable in the newly pop-up dialog box, and then click OK. The linked variable name will appear in the value column. Finally, click OK, that is, the variable linking is completed. Similarly, other control object follow suit.

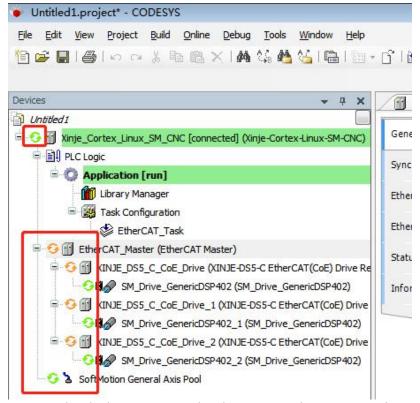

Add an object that simulates the rotation of the motor and link it to the motor axis. Add it in the same way as above.

The created view is as follows:

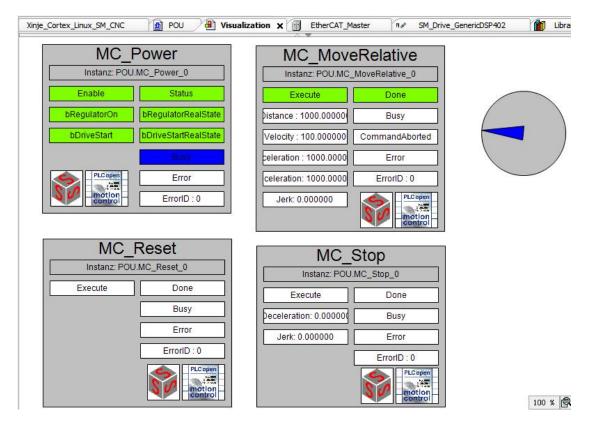

10) Online control

Parameter setting of axis. Double click axis 1 to set axis parameters in the Scaling/Mapping tab. ① To set the encoder accuracy, a 19-bit encoder is connected in this example, so 524288 is filled in. The relationship between settings and output: coefficient = (4)*(5)*(6)/(2)*(3))

Example: when the input-output relationship coefficient is 10, the distance in the MC_MoveRelative function block is set to 100, then 100/10*524288 = 5242880, that is, the set operating distance is 5242880 pulses, and the motor will rotate for 10 revolutions.


At this time, set the velocity value in the function block to 10, then 10/10*524288 = 524288, that is, the motor will run at the speed of 524288/s.

Set the acceleration value to 1000, then 1000/10*524288 = 52428800, that is, the acceleration of the motor is $52428800/s^2$, the deceleration setting is the same.



After setting parameters, compile the program for syntax check, and log in and run the program after no error is reported. Login enables the application to establish a connection with the target device and enter the online state. The precondition for correct login is to correctly configure the communication settings of the device and the application must be free of compilation errors.

Execute compile, login, run, the normal operation status is shown in the figure below:

At this time, the distance, speed and other parameters that the motor needs to move can be set in the visualization. Click bDriveStart—bRegulatorOn—Enable in turn in the MC_Power function block to enable the motor normally. Finally, click Execute in MC_MoveRelative function block to start relative position movement.

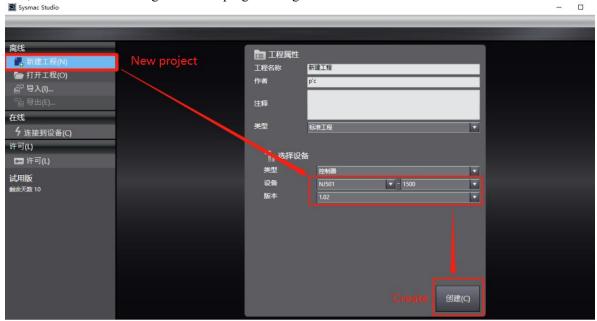
11.4 OMRON and DS5C2 servo Ethercat communication example

This example will explain how Omron PLC is used as EtherCAT master station and Xinje servo is used as slave station to realize EtherCAT motion control.

11.4.1 System configuration

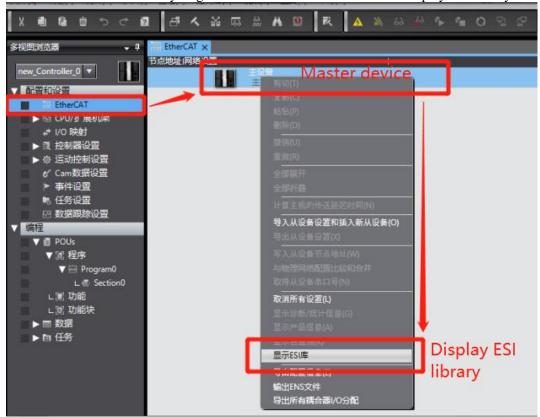
Name	Model	Quantity	Note
Upper computer	Sysmac Studio	1	Omron software
Controller	OMRON NJ501-1500 series	1	
Xinje servo	DS5C2-41P0-PTA	1	
Network cable	JC-CA-3	Some	Used for connection between computer and PLC or between PLC and servo

11.4.2 System topology

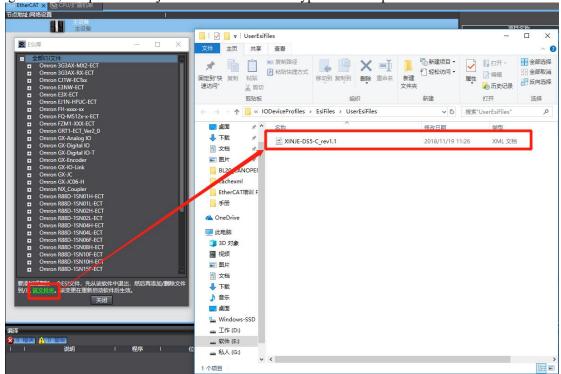

The NJ501 CPU module has two network ports, the red marked is Ethernet/IP, which are used to connect the Omron host computer SYSMAC studio to monitor and write data to the PLC. The yellow marked is EtherCAT, and the other end is connected to Xinje DS5C2 series servo to realize EtherCAT communication.

Each network port is equipped with three indicators, RUN/ERROR/ACT. After the network cable is correctly connected, RUN should be on and ACT should be on. When the communication is established and there is data interaction at the network interface, ACT flashes. Error will not light up unless it is abnormal.

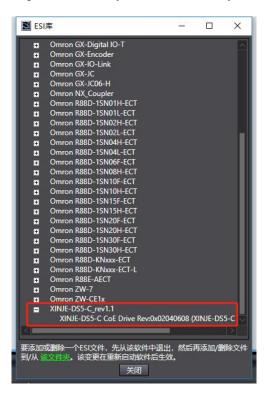
11.4.3 Debugging steps


1)New project

If "new project" is selected for the first time, select model: NJ501-1500, version 1.02 in the project attribute interface, and click "create" to generate the programming interface.

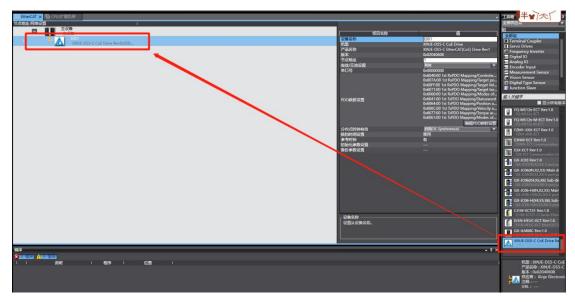

2)Add XML file

Double click "EtherCAT" on the main interface to call up the EtherCAT configuration interface. For the first time, you need to add XML files to the library. Right click "master device" and select "display ESI library".

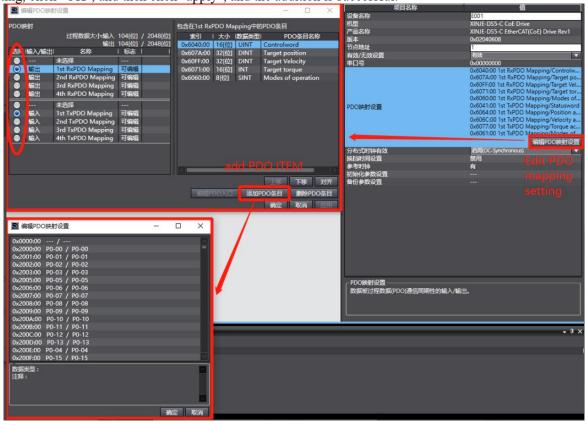


Then we need to add the XML file of DS5C2 to the pop-up ESI library. Select "this folder" to display the path of

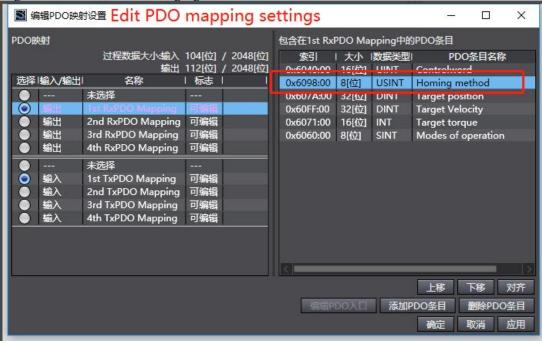
the storage folder, and put the "Xinje-DS5C2-rev1.1" XML type file in the path folder.



Finally, close SYSMAC studio and restart the software, browse the "ESI library" again, and the Xinje-DS5C2 slave station description file already exists in the library.

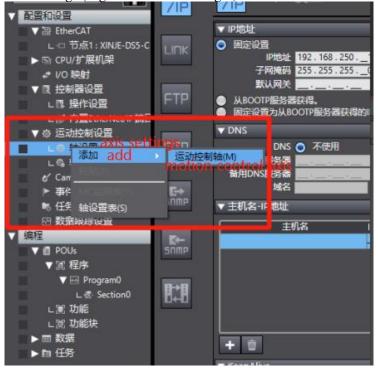

3)Add device

Find "XINJE-DS5C2 CoE Drive Rev" on the right side of the interface, double click it to add to the node under master device.



After adding a node, select the node with the cursor to display the PDO configuration of the current node. Select Edit PDO mapping settings. The pop-up interface will display the current output PDO mapping on the left and the PDO items on the right. You can add or delete PDO as required.

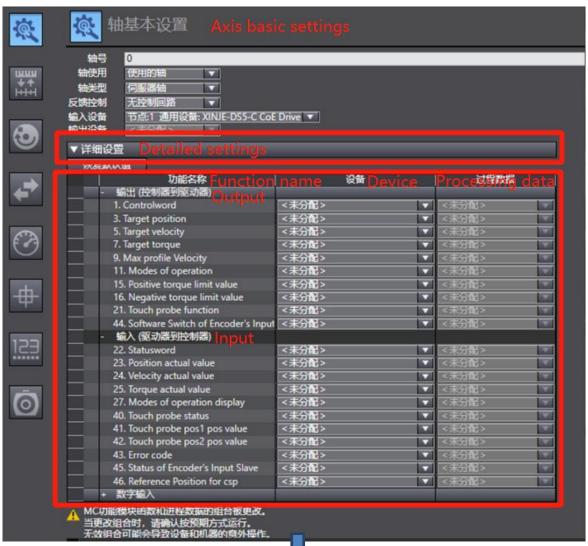
Select "add PDO item" to add PDO, and the pop-up window will show the PDO objects that can be added. After selecting, click "OK", and then click "apply", and the addition is successful.



After adding, it is shown in the following figure:

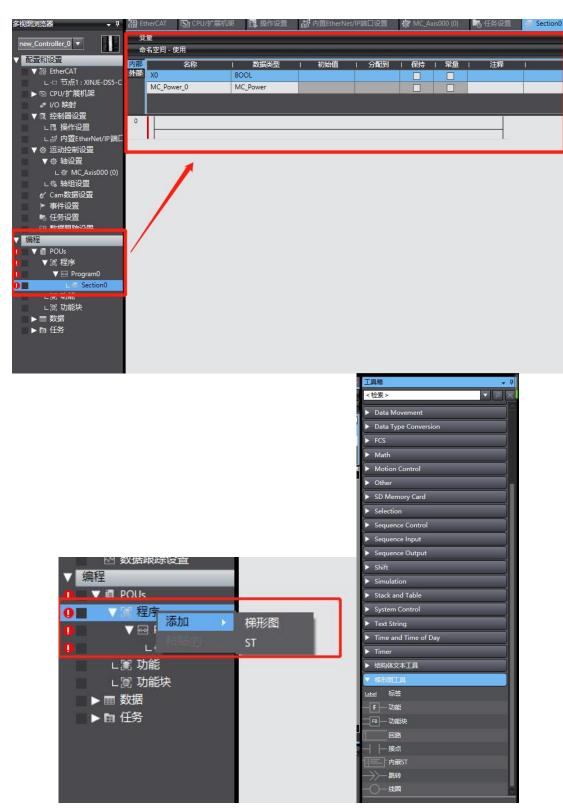
4) Motion control axis settings

Double click "motion control settings", right-click "axis settings", and select "add - motion control axis".

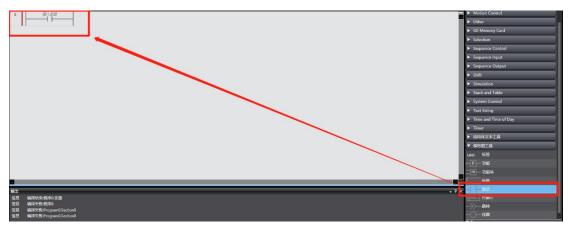

Double click "MC_Axis000" to display the axis setting interface. The interface is divided into multiple sub interfaces.

Select "axis type - servo axis" in the "axis basic settings" interface, and select "node 1: DS5C2" in the "input device".

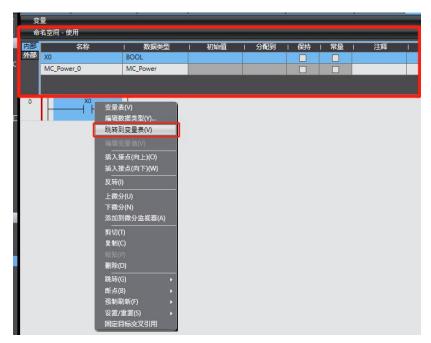
Click detailed settings, expand the configuration module. The function name needs to be mapped to the PDO mapping item on the device. It needs to be added manually here. Missing or wrong addition will affect the subsequent use of this parameter.



In "unit conversion setting", the number of motor encoder lines is correctly filled in the "number of command pulses per motor revolution". If 19-bit encoder is used in this example, it is modified to 524288. "Working stroke of motor for one revolution" is the equivalent stroke of motor for one revolution. The example here is modified to 524288, and the default gear ratio is 1:1.

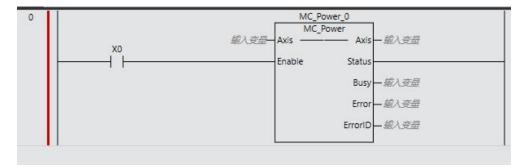


5)Write "round trip" program


Description of programming interface: select "programming / POUs / program / program0/ section0" and double-click "section0" to show the programming interface. By default, program0 is ladder programming. If ST programming is selected, right click "program / add / ST". The "toolbox" allows you to add various ladder elements.

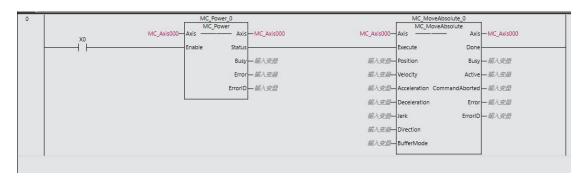
Select "contact" and drag it directly into the ladder node.

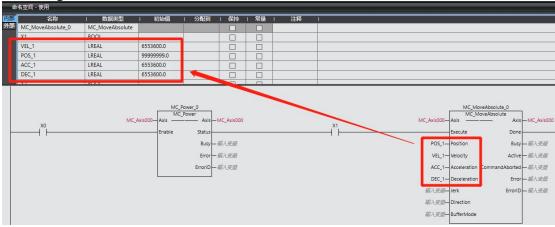
Click "input variable" to write the variable name. If it is a new variable name, a new variable will be generated. If it is an existing variable, you can directly select a variable to fill in. New variables can be viewed in the variable table. Right click variable X0 and select "jump to variable table" to expand the variable table. In the variable table, you can create variables of various data types for calling, or view all variables that have been defined.

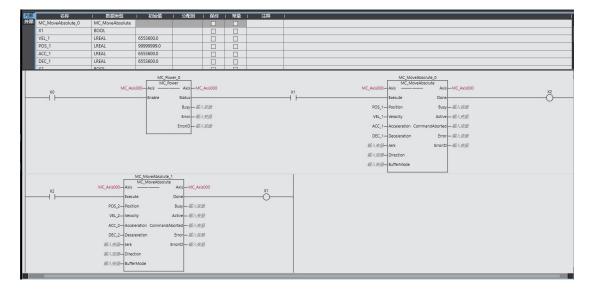


Add a "function_block" in the same way as in the ladder diagram.

Enter a function block name to call this function block parameter. If "MC_Power" is input, the calling function block is declared as MC Power.




Function block "Axis" pin connected variable, input MC_Axis000 indicates that the function block is applied to the axis "MC_Axis000".

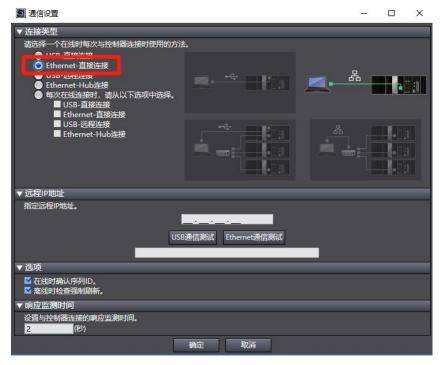

Add function block "MC_MoveAbsolute" in the same way, and define the variable name for the pins "Position" "Velocity" "Acceleration" to "Pos_1" "Vel_1" "Acc_1" "Dec_1".

The defined variables can be written with initial values in the variable table, and the initial values take effect when the PLC is running.

The same way to write a complete round-trip motion ladder program.

6)Gateway communication settings

First, check the IP address of the PLC: in the multiview browser, select "controller settings - built-in Ethernet / IP port settings" to show the "TCP / IP settings" interface on the right. The fixed IP address setting of the current project can be viewed in the configuration interface. For a new program, the default IP address is 192.168.250.1.



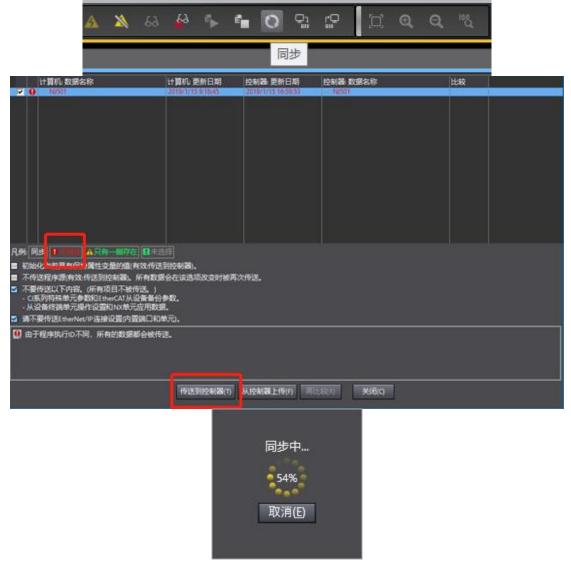
Communication configuration path: "controller - communication settings".


Select "Ethernet - direct connection" in the "communication setting" interface, and then click "OK" to close the interface.

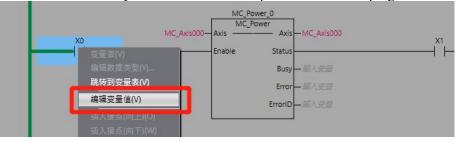
Note: Ethernet connection requires that the IP address of the connected device (PC) is automatically obtained or in the PLC IP address network segment. Therefore, before connecting, confirm whether the IP address setting of the PC meets the requirements.

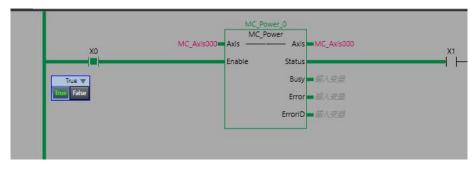
7)Compile program and prepare connection

Find "compile controller" in the toolbar to compile the project. If there is any error, check the cause of the error.

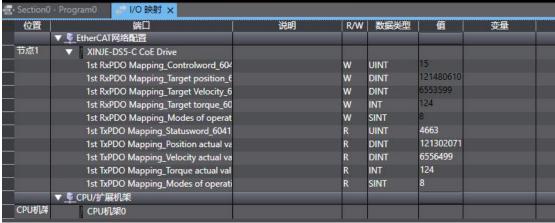

After the compilation is passed, find "online" in the toolbar and click it. If the pop-up window "failed to connect to the controller" appears, check whether the communication configuration is correct. After successful online, the upper computer switches to online status.

Select "synchronize" in the toolbar, and the pop-up window compares the local project with the project in the controller. The local project and the project in the controller display "out of sync". Click "transfer to controller" to download the local project and overwrite the original project of the controller.



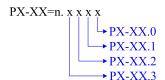

After synchronization, click "recompare" to view the synchronization items of each local project and the controller project. When the subsequent modified project is synchronized again, the different items from the controller project will be marked in detail.

8)Online control


On the "section0" interface, right-click the variable "X0", select "Edit variable value", switch BOOL to the state "True", the function block "MC_Power" takes effect, and the servo enable is turned on. Change the state of the variable "X1" to "True" in the same way to realize the round-trip movement of the program.

PDO object data can be monitored by "IO mapping".

Appendix


Appendix 1. Driver parameters

Appendix 1.1 PX-XX

Modification and effective:

- "O" means modifying when servo OFF and take effect at once.
- " $\sqrt{}$ " means modifying anytime and take effect at once.
- "•" means modifying when servo OFF and take effect when power on again.
- "\D" means modifying anytime and take effect when the motor doesn't rotate.

For parameters set in hexadecimal system, the prefix "n." is added to the setting value to indicate that the current setting value is hexadecimal number.

(1) P0-XX

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P0-00	Driver type 0:General type 1:EtherCAT type	-	1	0~1	0	All
P0-01	P0-00=0:General type 1-Internal Torque Mode 3-Internal speed Model 5-Internal Location Mode P0-00=1:EtherCat type 1-Profile position control mode(PP) 3-Profile speed control mode(PV) 4-Profile torque control mode(TQ) 6-Homing mode(HM) 8-Cyclic synchronous position control mode(CSP) 9-Cyclic synchronous velocity control mode(CSV) 10-Cyclic synchronous torque control mode(CST)	-	0	1~10	0	All
P0-02	Control mode 2 (ditto) When the/C-SEL signal is valid, the servo system will switch to the mode selected by P0-02 for operation	1	0	1~10	0	All
P0-03	Enabling mode 0:not enabled 1:IO /SON enable 2:Software enable(Panel/Modbus) Write 1 to panel F1-05; 3:Bus Enable	-	3	0~3	0	All
P0-04	Rigidity grade	-	<=20P7: 13 >=21P0: 11	0~41	Δ	All
P0-05	Definition of rotation direction 0- positive mode	-	0	0~1	•	All

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
	1- negative mode					
P0-07	First inertia ratio	1%	200	0~50000	√	All
P0-09.0	Input pulse command positive direction 0: Positive pulse counting 1: Reverse pulse counting	-	0	0~1	•	6, 7
P0-09.2	Input pulse command filtering time	-	F	0~F	•	6, 7
P0-10.0 xxx	0: CW/CCW 1: AB 2: P+D	-	2	0~2	0	6, 7
P0-11	Low bit of pulses per cycle ×1	-	0	0~9999	0	5, 6
P0-12	High bit of pulses per cycle × 10000	-	0	0~65535	0	5, 6
P0-13	Electronic Gear Numerator	-	1	1~65535	V	5, 6
P0-14	Denominator of Electronic Gear	-	1	1~65535	0	5, 6
P0-15	Pulse frequency corresponding to rated speed in speed mode	100Hz	1000	0~10000	0	7
P0-16	Speed command pulse filtering time	0.01ms	100	0~10000	0	7
P0-23	Pulse offset limit	0.01 turn	2000	0~65535	√	5, 6
P0-24	0 - cumulative discharge time 1 - average power mode 1 2-average power mode 2	-	0	0~2	0	All
P0-25	Power Value of Discharge Resistance	W	Set as model	0~65535	0	All
P0-26	Discharge resistance value	Ω		1~500	0	All
P0-27	Servo shutdown the enable stop mode 0: Free stop, maintain free running state after stopping 1: Free stop, maintain DB state after stopping 2: Slow down and stop, maintain free running state after stopping 3: Slow down and stop, maintain DB status after stopping 4: DB stops and maintains a free running state after stopping 5: DB stops, maintains DB state after stopping	-	0	0~5	0	All
P0-28	Servo Overrun Stop Mode (P0-28.0) 0-Deceleration stop 1 1-Inertial Stop 2-Deceleration stop 2 3-Alarm Stop Overtravel alarm shield switch (P0-28.1) 0-Not shield the alarm 1-Shield the alarm EC bus overtravel stop mode		2	0~3	0	All
	(P0-28.0) 0: Direct alarm, using servo deceleration shutdown method 1: Alarm after decelerating and stopping as 605Ah mode		2	0~3	0	1 3 4 8 9

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
	2: Do not use overtravel					
P0-29	Servo alarm stop mode 0: Free stop, maintain free running state after stopping 1: Free stop, maintain DB state after stopping 2: DB/deceleration stop, maintain free running state after stopping 3: DB/deceleration stop, maintain DB state after stopping 4: DB stops and maintains a free running state after stopping 5: DB stops, maintains DB state after stopping 5: DB stops, maintains DB state after stopping Stop timeout time	- 1ms	20000	0~5	0	All
P0-31	Deceleration stop time	1ms	25	0~5000	0	All
P0-33	Set the motor code	-	0000	0~65535	•	All
P0-53	Automatic reading of motor parameters alarm shielding switch 0: Do not block alarms 1: Block alarm for not reading valid motor parameters	-	0	0/1	•	All
P0-55	Open loop rotation speed	-	0	-6000~600 0	0	All
P0-56	Number of encoder communication attempts	-	10	1~65535	0	All
P0-63.0	Selection of encoder speed measurement algorithm 0: K-type speed measurement (default) 1: Speed measurement method 1, S method (Used in conjunction with P0-63.1) 2: Speed measurement method 2, P method (Used in conjunction with P0-63.2) 3: Speed measurement method 3, T method (parameter configuration P0-76,%)	-	0	0~3	0	All
P0-63.1	Original position differential right shift bit numbers in S method	-	0	0~f	0	All
P0-63.2~3	Speed measurement zone total length L in P method	-	0	4~17	0	All
P0-68.0~	Number of consecutive error	-				
P0-68.1	alarms in the update sequence of		0x05	0x01~0xFF	•	All
$XX\Box\Box$	coded data					
P0-68.2~ P0-68.3	E-241 Alarm filtering times	-	0	0~0xFF	•	All
P0-69	Fan switch (P0-69.0) 0- Turn on the fan when the temperature greater than 45°C and turn off the fan when less than 42°C (hysteresis 3°C) 1 - Turn on the fan after enabling, turn off the fan when not enabling	-	1	0/1	V	All

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
	Large motor thermocouple break alarm shield switch (P0-69.1) 0-not shield thermocouple disconnection alarm 1-shield thermocouple disconnection alarm					
P0-70	Pulse command offset limit value	0.01 turns	200	0~65535	√	8
P0-71	Selection of bus CSP position interpolation mode 0: Advanced interpolation 1: Normal interpolation	-	1	0~1	√	8
P0-72	Bus Sync0 offset time After setting the parameters, the upper computer needs to be reactivated to take effect, and the modification effect can be observed through U5-19	[%]	30	0~60	٧	8
P0-74	Blocking alarm time	1ms	As the model	0-65535	√	All
P0-75	Blocking alarm speed	1rpm	50	5~9999	V	All
P0-79	Battery undervoltage alarm switch of absolute encoder (firmware version 20160304 and later) 0 - Used as absolute encoder 1 - Used as incremental encoder 2 - Used as absolute value encoder, ignoring multi turn overflow alarm	-	1	0~2	•	All
P0-80	Motor thermal power protection mode 0- Current protection 1- Average thermal power protection 2 - Analog thermal power protection	-	2	0~2	•	All
P0-88	STO status asynchronous alarm detection time	0.1ms	60	0~1000	√	All
P0-89.0~1	STO buffer circuit abnormal alarm detection filtering time	0.1ms	10	0~255	√	All
P0-89.2~3	STO input detection filtering	0.1ms	12	10~30	√	All
P0-90.0~1	EDM circuit abnormal alarm detection filtering	0.1ms	200	0~255	√	All
P0-92~P0- 93	32-bit electronic gear ratio numerator. take effect when P0-11~P0-14 is 0. P0-92*1 + P0-93 *10000	-	1	1~9999 1~65535	0	5, 6
P0-94~P0-	32-bit electronic gear ratio denominator.	-	1	1~9999		5 6
95	P0-11~P0-14 is 0. P0-94*1 + P0-95 *10000		1	1~65535	0	5, 6

(2) P1-XX

Parameter		Unit	Default value	Range	Effective	Suitable mode
P1-00	First speed loop gain	0.1Hz	200	10~20000	√	All
P1-01	Integral Time Constant of the First	0.01ms	2653	15~51200	√	All

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
	Speed Loop					
P1-02	First position loop gain	0.1/s	480	10~20000	√	All
P1-05	Second speed loop gain	0.1Hz	200	10~20000	V	1 3 5 6 7
P1-06	Integral Time Constant of the second Speed Loop	0.01ms	3300	15~51200	√	1 3 5 6 7
P1-07	Second position loop gain	0.1/s	200	10~20000	√	1 3 5 6 7
P1-10	Speed feedforward gain	1%	0	0~300	V	5 6 7
P1-11	Speed feedforward filter time	0.01ms	50	0~10000	V	5 6 7
P1-14	Gain switching mode setting	-	0	0~0x00A2	√ V	All
P1-15	Gain switching waiting time	-	5	0~1000	√ V	All
P1-16	Gain switching level threshold	-	50	0~20000	√	All
P1-17	Gain switching level hysteresis	-	30	0~20000	V	All
P1-18	Position loop gain switching time	-	3	0~1000	V	All
P1-19.0	Gap compensation function direction 0: Positive direction 1: Reverse direction	-	0	0~1	√	All
P1-19.1	Gap compensation function switch 0: Close 1: Open	-	0	0~1	√	All
P1-20	Gap compensation quantity	0.1Pref	0	0~65535	√	All
P1-21	Gap compensation filtering time	0.01ms	0	0~65535	√	All
P1-23	Speed instruction filter time	0.1ms	0	0~65535	0	3
P1-24	Position command acceleration and deceleration filtering time	0.1ms	0	0~65535	Δ	5 6
P1-25	Position instruction smooth filter time	0.1ms	0	0~65535	Δ	5 6
P1-26.0	Switching conditions for speed control mode [P-PI switching] 0: Do not use mode switching 1: Switching condition based on internal torque command 2: Switching condition based on speed command 3: Switching condition based on acceleration 4: Switching condition based on position deviation	-	<=22P6: 1 Others: 0	0~4	Δ	All
P1-26.1	Speed control mode switching integral holding selection 0: Clear the integral of 0 Asr 1: Keep the points unchanged and no longer accumulate	-	1	0~1	Δ	All
P1-27	Mode Switching - Torque Command Threshold	%	200	0~800	Δ	All
P1-28	Mode Switching - Speed Command Threshold	rpm	0	0~10000	Δ	All
P1-29	Mode Switching - Acceleration Threshold	rpm/s	0	0~30000	Δ	All
P1-30	Mode switching - Position deviation threshold	Command unit	0	0~10000	Δ	All

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P1-31	I-P control switching threshold	%	100	0~100	Δ	All
	Encoder zero position deviation detection cycle	-	1000	0~65535	$\sqrt{}$	All
1 P I = / 3 U~/ I	Encoder zero deviation detection threshold	-	0A	0~500	√	All
P1-75.2~3	Electric angle deviation detection filtering frequency	-	06	0~500	V	1 2 3 4 5 6 7

(3) P2-XX

Parameter		Unit	Default value	Range	Effective	Suitable mode
P2-00.0	Disturbance observer switch 0- OFF 1- ON	-	0	0~1	0	All
P2-00.1	Selection of speed observer 0: Close 1: EhVobs 2: Vobs	-	0	0~2	0	All
P2-00.3	Electric angle compensation switch 0: Close 1: Open	-	0	0~1	0	All
P2-01.0	Adaptive mode switch 0- OFF 1- ON	-	0	0~1	•	All
P2-01.1	Adaptive level 0-High response 1-Low noise	-	Set as model	0~1	•	All
P2-02.0	Auto-tuning mode 1-Soft 2-Fast positioning 3-Fast positioning, control the overshoot	-	3	1~3	V	All
P2-02.2	Load type (valid only during auto-tuning) 1-Synchronous belt 2-Screw rod 3-Rigid Connection	-	2	1~3	V	All
P2-03.2	Enable speed loop IP control 0: Close 1: Open	-	0	0~1	√	All
P2-03.3	Adaptive load type 0-Small Inertia Mode 1-Large Inertia Mode	-	0	0~1	•	All
P2-05	Adaptive mode speed loop gain (standard)	0.1Hz	200	1~65535	0	All
P2-07	Adaptive mode inertia ratio (standard)	%	0	0~10000	0	All
P2-08	Gain of adaptive mode speed observer (standard)	Hz	30	10~1000	0	All
P2-12	Maximum Inertia Ratio of Adaptive Mode (Standard)	-	30	1~10000	0	All
P2-15	Inertia identification and internal	0.01r	100	1~3000	√	All

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
	instruction self-tuning maximum travel					
P2-17	Inertia identification and internal instruction self-tuning maximum speed	-	0	0~65535	V	All
P2-18	Initial inertia ratio of inertia identification	%	500	1~20000	√	All
P2-19	Adaptive mode bandwidth	%	50	1~100	0	All
P2-35	Torque command filtering time constant 1	0.01ms	66	0~65535	√	All
P2-36	Torque command filtering time constant 2	0.01ms	100	0~65535	√	All
P2-41	Disturbance torque compensation coefficient (Non adaptive mode is valid)	%	85	0~100	$\sqrt{}$	All
P2-42	Cut off frequency of disturbance torque low-pass filter	0.1Hz	0	-1000~1000	√	All
P2-43	Disturbance observer inertia coefficient	%	100	1~1000	√	All
P2-47.0	Model Loop Switch 0-OFF 1-ON	-	1	0~f	V	All
P2-49	Model loop gain	0.1Hz	480	10~20000	V	3 4 5 6 7
P2-60.0	Active Vibration Suppression Switch 0-OFF 1-ON	-	0	0~1	√	3 4 5 6 7
P2-60.1	Active Suppression Auto-tuning Switch 0-Active Vibration Suppression is not Configured in auto-tuning 1- Configure the Active Vibration Suppression when auto-tuning	-	1	0~1	√	3 4 5 6 7
P2-61	Active Vibration Suppression frequency	0.1Hz	10000	10~20000	V	All
P2-62	Active Vibration Suppression gain	%	100	1~1000	√	All
P2-63	Active Vibration Suppression damping	%	100	0~300	√	All
P2-64	Filtering time of active vibration suppression 1	-	0	-10000~10000	√	All
P2-65	Filtering time of active vibration suppression 2	-	0	-10000~10000	√	All
P2-69.0	Notch filter 1 switch	-	0	0~1	√	All
P2-69.1	Notch filter 2 switch	-	0	0~1	√	All
P2-69.3	Notch filter 3 switch	-	0	0~1	√	All
P2-70.0	Notch filter 4 switch	-	0	0~1	√	All
P2-70.1	Notch filter 5 switch	-	0	0~1	√	All
P2-71	First notch frequency	Hz	5000	50~5000	√	All
P2-72	First notch attenuation	%	71	50~1000	√	All
P2-73	First notch band width	0.1dB	0	0~1000	√	All
P2-74	Second notch frequency	Hz	5000	50~5000	√	All

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P2-75	Second notch attenuation	%	71	50~1000	√	All
P2-76	Second notch band width	0.1dB	0	0~1000	√	All
P2-77	Third notch frequency	Hz	5000	50~5000	√	All
P2-78	Third notch attenuation	%	71	50~1000	√	All
P2-79	Third notch band width	0.1dB	0	0~1000	√	All
P2-80	Fourth notch frequency	Hz	5000	50~5000	√	All
P2-81	Fourth notch attenuation	%	71	50~1000	√	All
P2-82	Fourth notch band width	0.1dB	0	0~1000	√	All
P2-83	Fifth notch frequency	Hz	5000	50~5000	√	All
P2-84	Fifth notch attenuation	%	71	50~1000	√	All
P2-85	Fifth notch band width	0.1dB	0	0~1000	√	All

(4) P3-XX Speed control parameters

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P3-05	Preset speed 1	rpm	0	-9999~9999	√	3
P3-06	Preset speed 2	rpm	0	-9999~9999	√	3
P3-07	Preset speed 3	rpm	0	-9999~9999	√	3
P3-09	Acceleration time	ms	0	0~65535	0	3 4 7
P3-10	Deceleration time	ms	0	0~65535	0	3 4 7
P3-12	Zero-speed clamping mode	-	0	0~3	0	3 4 7
P3-13	Zero-speed clamping speed	rpm	10	0~300	0	3 4 7
P3-14	Forward Maximum Speed Instruction Limit	rpm	4000	0~10000	0	All
P3-15	Reverse Maximum Speed Instruction Limit	rpm	4000	0~10000	0	All
P3-16	Internal Forward Speed Limitation in Torque Control	rpm	2000	5~10000	V	1 2
P3-17	Internal Reverse Speed Limitation in Torque Control	rpm	2000	5~10000	√	1 2
P3-18	Jogging speed	rpm	100	0~1000	0	All
P3-19	Forward warning speed	rpm	3000	0~10000	0	All
P3-20	Reverse warning speed	rpm	3000	0~10000	0	All
P3-21	Forward alarming speed	rpm	4000	0~10000	0	All
P3-22	Reverse alarming speed	rpm	4000	0~10000	0	All
P3-28	Internal forward torque limit	%	As the model	0~ Motor overload multiple	V	All
P3-29	Internal reverse torque limit	%	As the model	0~ Motor overload multiple	V	All
P3-30	External forward torque limit	%	As the model	0~ Motor overload multiple	V	All
P3-31	External reverse torque limit	%	As the model	0~ Motor overload	V	All

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
				multiple		
P3-33	Preset torque	%	0	-1000~1000	\checkmark	1
P3-37	Delay in switching torque mode	ms	40	0~9999	√	1 2
P3-38	Anti blockage forward torque limit	%	As the model 0~ Motor overload multiple		V	All
P3-39	Anti blockage reverse torque limit	%	As the model	0∼ Motor		All
P3-40.0	Friction compensation switch	-	0	0~1	$\sqrt{}$	All
P3-40.1	Selection of Friction Compensation Speed Source	-	0	0~2	√	All
P3-45	Friction compensation speed threshold	0.1rpm	20	0~200	√	All
P3-46	Dynamic braking delay enable	ms	10	0~50		All

(5)P4-XX Internal position parameters

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P4-00.0	Z phase signal numbers The Z phase signal numbers after leaving the limit switch (note: stop when N+1 Z phase signal reached)	-	2	0~f	0	5 6
P4-00.1	Search the origin function 0-OFF 1-ON		0	0~1	0	5 6
P4-00.2	Return to zero overrun prohibition		0	0~1	0	5 6
P4-01	Speed of hitting the proximity switch	rpm	600	0~65535	0	5 6
P4-02	Speed of leaving proximity switch	rpm	100	0~65535	0	5 6
P4-03.0	Internal Location Given Mode Sets Location Monm,de 0-Relative positioning 1-Absolute positioning	-	0	0~1	0	5
P4-03.1	Internal position setting mode Set step change mode 0 - Step change when signal is ON, recyclable 1 - Step change on the rising edge of the signal, single step execution 2 - The rising edge of the signal is started, and all the signals are executed in sequence without circulation 3 - Communication setting section number 4 -/CHSTP bilateral edge trigger 5- Terminal/PREFA (P5-57),/PREFB (P5-58),/PREFC (P5-59) select segment number, and 1~3 segments can be selected	-	0	0~5	0	5

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P4-03.2	Internal position mode sets waiting mode 0-wait positioning completion 1-not wait positioning completion	-	0	0~1	0	5
P4-04	Valid segment number	-	0	0~35	0	5
P4-10~P4-11	First segment pulse	1pul	0	-327689999~ 327679999	√	5
P4-12	First segment speed	0.1rpm	0	0~65535	√	5
P4-13	First segment acceleration time	1ms	0	0~65535	√	5
P4-14	First segment deceleration time	1ms	0	0~65535	√	5
P4-16	Adjusting time	1ms	0	0~65535	√	5
P4-10+(n-1)*7 ~ P4-16+(n-1)*7	Segment 1 to 35 pulse parameters (n is segment number)	-	-	-	V	5

Note:

(6)P5-XX Signal parameter setting

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P5-00	Positioning completion width/COIN	Command unit	11	1~65535	√	5 6
P5-01	Location Completion Detection Mode	-	0	0~3	√	5 6
P5-02	Location completion retention time	ms	0	0~65535	√	5 6
P5-03	Rotation Detection Speed	rpm	50	0~10000	√	All
P5-04	Same speed detection speed	rpm	50	0~10000	√	All
P5-05	Reached detection speed	rpm	1000	0~10000	√	All
P5-06	Positioning near output width	Command unit	50	0~65535	√	5 6
P5-07	Servo OFF delay time	ms	500	-500~9999	0	All
P5-08	Brake instruction output speed	rpm	30	20~10000	0	All
P5-09	Brake instruction waiting time	ms	500	0~65535	0	All
P5-10	User-defined output 1 trigger condition	-	0	0~ffff	√	All
P5-11	Set a value that compares with the trigger condition of custom output 1	Related to trigger condition	0	-9999~9999	√	All
P5-12	Select custom output 1 mode	-	0	0~3	√	All
P5-13	Setting custom output 1 hysteresis	Related to trigger condition	0	0~65535	√	All
P5-14	Custom Output 2 Trigger Condition	-	0	0~ffff	√	All
P5-15	Set a value that compares with the trigger condition of custom output 2	Related to trigger condition	0	-9999~9999	√	All
P5-16	Select custom output 2 mode	-	0	0~3	√	All
P5-17	Setting custom output 2 hysteresis	Related to trigger condition	0	0~65535	√	All

Set pulse number=pulse number (high bit) × 10000+pulses (low order);
 35 sections in total; The parameters of sections 1 to 12 can be set through the panel, and the parameters of sections 13 to 35 need to be written through communication (RS232 and RS485).

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P5-18	IO filter time multiple	-	1	0~10000	√	All
P5-19	Z-phase output holding time	ms	2	1~65535	√	All
P5-20.0~1	/S-ON: servo signal 00: Set the signal to be invalid all the time. 01: Input positive signal from SI1 terminal. 02: Input positive signal from SI2 terminal. 03: Input positive signal from SI3 terminal. 04: Input positive signal from SI4 terminal. 10: Set the signal to always be "valid". 11: Inverse signal is input from SI1 terminal. 12: Inverse signal is input from SI2 terminal. 13: Inverse signal is input from SI3 terminal. 14: Inverse signal is input from SI4	-	0	0~ff	√	All
P5-20.2	terminal. SI terminal filtering time	ms	0	0~f	√	All
P5-21.0~1	/P-CON proportion action instruction	-	00	0~ff	√	All
P5-21.2	SI terminal filtering time	ms	0	0~f	\ \ \	All
P5-22.0~1	In non EtherCAT mode: /P-OT: Forward drive prohibited EtherCAT mode: Control mode 6 (return to zero mode), POT inhibit signal	-	01	0~ff	V	All
P5-22.2	SI terminal filtering time	ms	0	0~f	√	All
P5-23.0~1	In non EtherCAT mode: /N-OT: Reverse drive prohibited EtherCAT mode: Control mode 6 (return to zero mode), NOT inhibit signal	-	02	0∼ff	V	All
P5-23.2	SI terminal filtering time	ms	0	0~f	1	All
P5-24.0~1	/ALM-RST: alarm clear	-	0	0~ff	√	All
P5-24.2	SI terminal filtering time	ms	0	0~f	√	All
P5-25.0~1	/P-CL: External Torque Limitation at Forward Rotation Side	-	00	0∼ff	√	All
P5-25.2	SI terminal filtering time	ms	0	0~f	√	All
P5-26.0~1	/N-CL: External Torque Limitation at Reverse Rotation Side	-	00	0~ff	$\sqrt{}$	All
P5-26.2	SI terminal filtering time	ms	0	0~f	√	All
P5-27.0~1	In non EtherCAT mode: /SPD-D: Internal Speed Direction Selection In EtherCAT mode: Control mode 6 (return to zero mode), Home Origin signal	-	03	0~ff	V	1 2 3 4 7
P5-27.2	SI terminal filtering time	ms	0	0~f		1 2 3 4 7

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P5-28.0~1	/SPD-A: Internal Setting Speed Selection	-	00	0∼ff	√	3 5
P5-28.2	SI terminal filtering time	ms	0	0~f	√	3 5
P5-29.0~1	/SPD-B: Internal Setting Speed Selection	-	00	0~ff	√	3 5
P5-29.2	SI terminal filtering time	ms	0	0~f	√	3 5
P5-30.0~1	/C-SEL: control mode selection	-	00	0~ff	√	All
P5-30.2	SI terminal filtering time	ms	0	0~f	√	All
P5-31.0~1	/ZCLAMP: zero position clamping	-	00	0~ff	√	3
P5-31.2	SI terminal filtering time	ms	0	0~f	√	3
P5-32.0~1	/INHIBIT: Instruction pulse prohibition	-	00	0~ff	√	5
P5-32.2	SI terminal filtering time	ms	0	0~f	√ √	5
P5-33.0~1	/G-SEL: gain switching	-	00	0~ff	1	All
P5-33.2	Filtering time of SI terminal	ms	0	0~f	1	All
P5-34.0~1	/CLR: pulse offset clear	-	00	0~ff	1	5 6
P5-34.2	SI terminal filtering time	ms	0	0~f	1	5 6
P5-35.0~1	/CHGSTP:internal position mode change step signal	-	00	0~ff	√	5
P5-35.2	SI terminal filtering time	ms	0	0~f	√ √	5
P5-36.0~1	/I-SEL:Inertia ratio switching	- 1115	00	0~ff	\ \ \ \ \	All
P5-36.2	SI terminal filtering time	ms	0	0~f	1	All
P5-37	/COIN_HD: Location Completion Maintenance 00: No output to terminal 01: Output positive signal from SO1 terminal 02: Output positive signal from SO2 terminal 03: Output positive signal from SO3 terminal 11: Output reverse signal from SO1 terminal 12: Output reverse signal from SO2 terminal 13: Output reverse signal from SO2 terminal. 13: Output reverse Signal from SO3 terminal	-	0000	0~ffff	√	5 6
P5-38	/COIN: positioning completion	-	0001	0~ffff	V	5 6
P5-39	/V-CMP: same speed detection	-	0000	0~ffff	√ ,	3 4 7
P5-40	/TGON: rotation detection	-	0000	0~ffff	√ /	All
P5-41	/S-RDY: ready	-	0000	0~ffff	√ /	All
P5-42	/CLT: torque limit	-	0000	0~ffff	√	All
P5-43	/VLT: speed limit detection	-	0000	0~ffff	√	1 2
P5-44	/BK: brake locking	-	0000	0~ffff	0	All
P5-45	/WARN: warning	-	0000	0~ffff	√	All
P5-46	/NEAR: near	-	0000	0~ffff	√ /	5
P5-47	/ALM: alarm	-	0002	0~ffff	√ /	All
P5-48	/Z: encoder Z phase signal output	-	0000	0~ffff	√	All
P5-50	/MRUN: internal position mode motion starting signal		0000	0~ffff	√	5
P5-51	/V-RDY: speed reached		0000	0~ffff	√	3 4 7
P5-52	/USER1: User-defined output 1	-	0000	0~ffff	√	All

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P5-53	/USER2: User-defined output 2	-	0000	0~ffff	√	All
P5-57	/PREFA: Intenral position selection signal A	-	0	※ 1	V	5
P5-58	/PREFB: Intenral position selection signal B	-	0	※ 1	V	5
P5-59	/PREFC: Internal position selection signal C	-	0	% 1	√	5
P5-61.0~1	/TRAJ-START: Motion start trigger signal	-	00	0~ff	V	5
P5-62	Probe function 1	-	0	0005	0	EtherCAT mode
P5-63	Probe function 2	-	0	0006	0	EtherCAT mode
P5-68.0~1	Terminal emergency alarm function	-	00	0~ff	√	All
P5-68.2	SI terminal filtering time	ms	0	0~f	√	All
P5-70	/SRDY: Output Conditions Selection 0: This terminal is turned on after initialization of the driver is completed 1: This terminal will not turn on until enabled.	-	0	0~1	V	All
P5-71	Function Selection of Directional Terminal of Pulse Speed Mode	-	0	0~1	√	7
P5-72	Remote input of SI input 1	-	0	0∼ff	$\sqrt{}$	EtherCAT mode
P5-73	Remote input of SI input 2	-	0	0∼ff	√	EtherCAT mode
P5-74	Remote input of SI input 3	-	0	0∼ff	√	EtherCAT mode
P5-76	Remote input of SO output 1	-	0	0∼ff	√	EtherCAT mode
P5-77	Remote input of SO output 2	-	0	0∼ff	√	EtherCAT mode
P5-78	Remote input of SO output 3	-	0	0∼ff	√	EtherCAT mode

Table 1 Input signal allocation

Input terminal	Servo model	Setting range
parameter		
P5-20~P5-36		0000 0003
P5-57~P5-59	DS5C2 series	n.0000~n.0003
P5-72~P5-74		n.0010~n.0013

Table 2 Output signal allocation

Output terminal parameter	Servo model	Setting range
P5-37~P5-53 P5-76~P5-78	DS5C2 series	n.0000~n.0003 n.0010~n.0013

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P6-00	Rigid setting mode 0: Standard mode 1: Positioning mode 2: Quick positioning mode	-	0	0~2	0	All
P6-05	Adaptive Mode Speed Loop Gain (Large Inertia)	0.1Hz	200	1~65535	0	1 3 5 6 7
P6-07	Adaptive mode inertia ratio (Large inertia)	%	50	0~10000	0	1 3 5 6 7
P6-08	Gain of adaptive mode speed observer (large inertia)	Hz	40	10~1000	0	1 3 5 6 7
P6-12	Maximum Inertia Ratio of Adaptive Mode (Large Inertia)	-	50	1~10000	0	1 3 5 6 7

(8)P7-XX Communication parameter setting(485 communication is not supported temporarily)

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P7-00	Slave station no.	-	0	0~100	0	EtherCAT mode
P7-10	RS232 station no.	-	1	0~100	$\sqrt{}$	1 3 5
P7-11.0~1	RS232 baud rate 00:300 01:600 02:1200 03:2400 04:4800 05:9600 06:19200 07:38400 08:57600 09:115200 0A:192000 0B:256000 0C:288000 0D:384000 0E:512000 0F:576000 10:768000 11:1M 12:2M 13:3M 14:4M 15:5M 16:6M	Baud rate	09	0~16	\checkmark	1 3 5
P7-11.2	RS232 stop bit 0:2 bit 2:1 bit	Stop bit	2	0~2	$\sqrt{}$	1 3 5
P7-11.3	RS232 stop bit 0: no parity 1: odd parity 2: even parity	Parity bit	2	0~2	$\sqrt{}$	1 3 5
P7-20	Ethercat homing find Z phase numbers	-	1	-9999~9999	0	EtherCAT mode
P7-21	Filter time after homing	Scan period	400	1~65535	0	EtherCAT mode

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P8-17	Sampling interval	-	25	1~65535	A	1 3 5
P8-25	Panel display selection	-	0	0~2	A	1 3 5

(10) P9-XX

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
P9-16	Touch stop homing speed threshold	rpm	2	0~1000	0	EtherCAT mode
	Touch stop homing torque threshold	%	100	0~300	0	EtherCAT mode
I	Touch stop homing time threshold	ms	500	10~1500	0	EtherCAT mode
	Quantitative pulse number low bit	-	0	-9999~9999	0	EtherCAT mode
I	Quantitative pulse number high bit	-	0	-9999~9999	0	EtherCAT mode

(11) PE-XX

(11) 1 L-AA						
Parameter	Function	Unit	Default value	Range	Effective	Suitable mode
PE-01.3	Weak magnetic control switch	_	0	0-1	$\sqrt{}$	All
PE-80	Weak magnetic control gain Kv	Hz	30	10-1000	\checkmark	All
	Weak magnetic control integration time constant Ti	%	16	10-1000	V	All
	Weak magnetic control integral limiting	%	60	0-200	V	All
PE-83	Voltage command limit threshold	%	115	50-150	V	All
PE-84	IdRef limit	%	95	50-150	V	All
	Smooth filtering time of main cycle voltage	0.1ms	20	0-1000	V	All

Appendix 1.2 FX-XX

Code	Contents
F0-00	Clear the alarm
F0-01	Restore to out of factory settings
F0-02	clear the position offset
F1-00	Jog run
F1-01	Test run
F1-02	Current sampling zero calibration
F1-05	Panel enable
F1-06	Absolute encoder clearing cycles

Appendix 1.3 U0-XX

U0-XX:

Parameter	Content	Unit
U0-00	Current speed of servo motor	Rpm
U0-01	Input speed instruction	Rpm
U0-02	Torque instruction	% rated
U0-03	Mechanical angle	1°
U0-04	Electric angle	1°

Parameter		Content	Unit	
U0-05	Bus voltage		V	
U0-06	IPM temperature		0.1°C	
U0-07	Torque feedback	% rated		
U0-08	Pulse offset	(-9999~9999)*1	Instruction pulse	
U0-09		(-65536~65535)*10000	•	
U0-10	Encoder feedback	(0000~9999)*1	Encoder pulse	
U0-11	Encoder feedback	(0000~65535)*10000	Encoder pulse	
U0-12	Input instruction pulse	(-9999~999)*1	Instruction pulse	
U0-13	numbers	(-32768~32767)*10000	This was trem pulse	
U0-14	Position feedback	(-9999~9999)*1	Instruction pulse	
U0-15		(-32768~32767)*10000	_	
U0-18	Torque current		0.01A	
U0-21	Input signal status 1		-	
U0-22	Input signal status 2		-	
U0-23	Output signal status 1		-	
U0-24	Output signal status 2		-	
U0-25	Input pulse frequency	(0000~9999)*1	Hz	
U0-26	input pulse frequency	11Z		
U0-41	Instantaneous output power	1W		
U0-42	Average output power		1W	
U0-43	Instantaneous thermal power		1W	
U0-44	Average thermal power		1W	
U0-49	Position feedforward		1 Command unit	
U0-50	Speed feedforward		rpm	
U0-51	Torque feedforward		% rated	
U0-52	Instantaneous Bus Capacitor Po	ower	1W	
U0-53	Average Bus Capacitor Power		1W	
U0-54	Encoder error count		-	
U0-55	Instantaneous regenerative bral		1W	
U0-56	Average regenerative braking of	lischarge power	1W	
U0-57	Absolute encoder present posit	ion feedback low 32-bit	Encoder Position	
U0-58	Trosorate encoder present posit		Elicodol I obition	
U0-59	Absolute encoder present posit	ion feedback high 32-bit	Encoder Position	
U0-60		5		
U0-89	Position command end flag		-	
U0-91	Multi-turn absolute motor circl	es	-	
U0-94	Calibrate the absolute value en	coder position low 32 bits		
U0-95		-	Encoder position	
U0-96 U0-97	Calibrate the absolute value en			
U0-98	High power motor temperature		0.1°C	

U1-XX:

Parameter	Contents	Unit
U1-00	Current alarm code	-
U1-01	Current warning code	-
U1-02	U phase current when alarming	0.01A
U1-03	V phase current when alarming	0.01A
U1-04	Bus voltage when alarming	V
U1-05	IGBT temperature when alarming	0.1℃
U1-06	Torque current when alarming	0.01A
U1-07	Excitation current when alarming	A
U1-08	Position offset when alarming	Instruction pulse
U1-09	Speed value when alarm occurs	rpm
U1-10	Seconds(low 16-bit) when alarming, cumulated seconds from the first time	S

Parameter	Contents	Unit
	power-on	
U1-11	Seconds(high 16-bit) when alarming, cumulated seconds from the first time power-on	S
U1-12	The number of errors in this operation is calculated after this power on	-
U1-13	The number of warnings for this operation is calculated after this power on	-
U1-14	Historical alarm amounts	-
U1-15	Historical warning amounts	-
U1-16	Recent 1st alarm code	-
U1-17	Recent 2nd alarm code	-
U1-18	Recent 3rd alarm code	-
U1-19	Recent 4th alarm code	-
U1-20	Recent 5th alarm code	ı
U1-21	Recent 6th alarm code	-
U1-22	Recent 7th alarm code	ı
U1-23	Recent 8th alarm code	-
U1-24	Recent 9th alarm code	-
U1-25	Recent 10th alarm code	-

U2-XX:

U2-00 Power on times U2-01 Series U2-02 Model (low 16-bit) U2-03 Model (high 16-bit) U2-04 out of factory date: year U2-05 out of factory date: month U2-06 out of factory date: day U2-07 Firmware version U2-08 Hardware version U2-09 Total running time (from the first time power on)	- - - - - - - - hour
U2-02 Model (low 16-bit) U2-03 Model (high 16-bit) U2-04 out of factory date: year U2-05 out of factory date: month U2-06 out of factory date: day U2-07 Firmware version U2-08 Hardware version	
U2-03 Model (high 16-bit) U2-04 out of factory date: year U2-05 out of factory date: month U2-06 out of factory date: day U2-07 Firmware version U2-08 Hardware version	- - -
U2-04 out of factory date: year U2-05 out of factory date: month U2-06 out of factory date: day U2-07 Firmware version U2-08 Hardware version	- - -
U2-05 out of factory date: month U2-06 out of factory date: day U2-07 Firmware version U2-08 Hardware version	- - -
U2-06 out of factory date: day U2-07 Firmware version U2-08 Hardware version	- - -
U2-07 Firmware version U2-08 Hardware version	- - hour
U2-08 Hardware version	- hour
	- hour
112 00 Total running time (from the first time power on)	hour
102-09 Total running time (from the first time power on)	11041
U2-10 Total running time (from the first time power on)	minute
U2-11 Total running time (from the first time power on)	second
U2-12 This time running time (from this time power on)	hour
U2-13 This time running time (from this time power on)	minute
U2-14 This time running time (from this time power on)	second
U2-15 Average output power (from the first time enabled, average power in the process of enabling)	1W
U2-16 Average thermal power (from the first time enabled, average power in the process of enabling)	1W
U2-17 Average bus capacitor filter power (from the first time power on, average power in the process of power on)	1W
U2-18 Accumulated motor turns (0000~9999)*1	turn
02-19 (0000~9999)*10000	turn
U2-20 Device serial no.: low 16-bit	-
U2-21 Device serial no.: high 16-bit	-
U2-22 Firmware generation date: year	-
U2-23 Firmware generation date: month/day	-
U2-24 Firmware generation date: hour/minute	_

U3-XX:

00 1111.		
Parameter	Contents	Unit
U3-00	Motor code automatically read by drive (including thermal power parameters)	-
U3-01	Motor version	_

U3-02	Encoder version	-
U3-70	Automatically read the motor code of the encoder in the motor parameters	
	(only related to the motor code)	-

U4-XX:

Parameter	Contents	Unit
U4-10	Resonance frequency detected by fast FFT	Hz
U4-16	Thermal power protection continuous overload operation accumulation value	-
U4-17	Thermal power protection instantaneous overload operation accumulation value	-
U4-18	SI terminal effective status	-
U4-19	SO terminal effective status	-

U5-XX:

Parameter	Contents	Unit
U5-00	Sync0 period time	us
U5-05	Port0 RX Error Count (Stop counting until 255)	-
U5-07	Port1 RX Error Count (Stop counting until 255)	-
U5-12	Port0 Link loss count (stop counting until 255)	-
U5-13	Port1 Link loss count (stop counting until 255)	-
U5-19	Synchronous offset time	us

Appendix 2. Object dictionary

All objects are configured in the object dictionary of each group through 4 digits 16-bit index configuration address.

The object dictionary of CoE (CANopen over EtherCAT) specified by CiA402 and the object dictionary of DS5C2 series are as follows:

Object dictionary specified by CiA402		DS5C2 series object dictionary		
Index	Content	Index	Content	
0000h∼0FFFh	Data type area	0000h∼0FFFh	Data type area	
1000h∼1FFFh	COE communication area	1000h∼1FFFh	COE communication area	
2000h~5FFFh		2000h~2FFFh	Servo parameter area	
	Factory custom area	3000h∼3FFFh	Reserved	
		4000h∼4FFFh	Reserved	
		5000h~5FFFh	Reserved	
6000h∼9FFFh	Profile area	6000h∼6FFFh	Driver Profile area	
	rioine area	7000h∼9FFFh	Reserved	
A000h~FFFFh	Reserved	A000h~FFFFh	Reserved	

Appendix 2.1 COE communication area (0x1000-0x1FFF)

Index	subindex	Name	Unit	Data range	Data type	Flag	PDO
1000h	00h	device type	-	0~429496795	U32	RO	NO
1001h	00h	error register	-	0~65535	U16	RO	NO
1008h	00h	Device	-	-	-	RO	NO
1009h	00h	Hardware version	-	-	-	RO	NO
100Ah	00h	software version	-	-	-	RO	NO
	00h	Identity	-	-	-	RO	-
	01h	vendor ID	-	0~255	U8	RO	NO
1018h	02h	product code	-	0~429496795	U32	RO	NO
	03h	Revision	-	0~429496795	U32	RO	NO
	04h	Serial number	-	0~429496795	U32	RO	NO
	00h	1st RxPDO mapping	-	0~24	U8	RW	NO
	01h	1 st mapping object	-	0~4294967295	U32	RW	NO
1600h	02h	2 nd mapping object	-	0~4294967295	U32	RW	NO
100011	03h	3 rd mapping object	-	0~4294967295	U32	RW	NO
			-	0~4294967295	U32	RW	NO
	18h	24 th mapping object	-	0~4294967295	U32	RW	NO
	00h	2nd RxPDO mapping	-	0~24	U8	RW	NO
	01h	1 st mapping object	-	0~4294967295	U32	RW	NO
1601h	02h	2 nd mapping object	-	0~4294967295	U32	RW	NO
160111	03h	3 rd mapping object	-	0~4294967295	U32	RW	NO
			-	0~4294967295	U32	RW	NO
	18h	24 th mapping object	-	0~4294967295	U32	RW	NO
	00h	3rd RxPDO mapping	-	0~24	U8	RW	NO
	01h	1 st mapping object	-	0~4294967295	U32	RW	NO
1602h	02h	2 nd mapping object	-	0~4294967295	U32	RW	NO
1002n	03h	3 rd mapping object	-	0~4294967295	U32	RW	NO
			-	0~4294967295	U32	RW	NO
	18h	24 th mapping object	-	0~4294967295	U32	RW	NO
1603h	00h	4th RxPDO mapping	-	0~24	U8	RW	NO
100311	01h	1st mapping object	-	0~4294967295	U32	RW	NO

Index	subindex	Name	Unit	Data range	Data type	Flag	PDO
	02h	2 nd mapping object	-	0~4294967295	U32	RW	NO
	03h	3 rd mapping object	-	0~4294967295	U32	RW	NO
			-	0~4294967295	U32	RW	NO
	18h	24 th mapping object	-	0~4294967295	U32	RW	NO
	00h	1st TxPDO mapping	-	0~24	U8	RW	NO
	01h	1st mapping object	-	0~4294967295	U32	RW	NO
1 4 001	02h	2 nd mapping object	-	0~4294967295	U32	RW	NO
1A00h	03h	3 rd mapping object	-	0~4294967295	U32	RW	NO
			-	0~4294967295	U32	RW	NO
	18h	24 th mapping object	-	0~4294967295	U32	RW	NO
	00h	2nd TxPDO mapping	-	0~24	U8	RW	NO
	01h	1st mapping object	-	0~4294967295	U32	RW	NO
	02h	2 nd mapping object	-	0~4294967295	U32	RW	NO
1A01h	03h	3 rd mapping object	-	0~4294967295	U32	RW	NO
			-	0~4294967295	U32	RW	NO
	18h	24 th mapping object	-	0~4294967295	U32	RW	NO
	00h	3rd TxPDO mapping	-	0~24	U8	RW	NO
	01h	1st mapping object	-	0~4294967295	U32	RW	NO
1 4 0 21	02h	2 nd mapping object	-	0~4294967295	U32	RW	NO
1A02h	03h	3 rd mapping object	-	0~4294967295	U32	RW	NO
			-	0~4294967295	U32	RW	NO
	18h	24 th mapping object	-	0~4294967295	U32	RW	NO
	00h	4th TxPDO mapping	-	0~24	U8	RW	NO
1A03h	01h	1st mapping object	-	0~4294967295	U32	RW	NO
	02h	2 nd mapping object	-	0~4294967295	U32	RW	NO
	03h	3 rd mapping object	-	0~4294967295	U32	RW	NO
			-	0~4294967295	U32	RW	NO
	18h	24 th mapping object	-	0~4294967295	U32	RW	NO
	00h	Sync mangager communication type	-	0~255	U8	RO	NO
	01h	Subindex 001	-	0~4	U8	RO	NO
1C00h	02h	Subindex 002	-	0~4	U8	RO	NO
	03h	Subindex 003	-	0~4	U8	RO	NO
	04h	Subindex 004	-	0~4	U8	RO	NO
	00h	RxPDO assign	-	0~4	U8	RW	NO
	01h	Subindex 001	-	1600h~1603h	U16	RW	NO
1C12h	02h	Subindex 002	-	1600h~1603h	U16	RW	NO
	03h	Subindex 003	-	1600h~1603h	U16	RW	NO
	04h	Subindex 004	-	1600h~1603h	U16	RW	NO
	00h	TxPDO assign	-	0~4	U8	RW	NO
	01h	Subindex 001	-	1A00h~1A03h	U16	RW	NO
1C13h		Subindex 002	-	1A00h~1A03h	U16	RW	NO
	03h	Subindex 003	-	1A00h~1A03h	U16	RW	NO
	04h	Subindex 004	-	1A00h~1A03h	U16	RW	NO
	00h	Sync manager 2 synchronization	-	0~20h	U8	RO	NO
	01h	Number of sub-objects	-	0~65535	U16	RW	NO
	02h	Sync mode	ns	0~4294967295	U32	RW	NO
1C32h	03h	Cycle time	ns	0~4294967295	U32	RW	NO
	04h	Shift time	-	0~65535	U16	RO	NO
	05h	Sync modes supported	ns	0~4294967295	U32	RO	NO
	06h	Minimum cycle time	ns	0~4294967295	U32	RO	NO

Index	subindex	Name	Unit	Data range	Data type	Flag	PDO
	08h	Calc and copy time	ns	0~65535	U16	RO	NO
	09h	Command (cannot support)	ns	0~4294967295	U32	RO	NO
	0Ah	Delay time (cannot support)	-	0~4294967295	U32	RO	NO
	0Bh	Sync0 cycle time When DC SYNC0 (1C32h-01h=02h), ESC register 09A0h is set. Except DC SYNC0, set to 0	-	0~65535	U16	RO	NO
	0Ch	Cycle time too small (cannot support)	-	0~65535	U16	RO	NO
	0Dh	SM-event missed (cannot support)	-	0~65535	U16	RO	NO
	0Eh	Shift time too short (cannot support)	ı	0~65535	U16	RW	NO
	20h	RxPDO toggle failed (cannot support)	-	0~1	BOOL	RO	NO
	00h	Sync manager 3 synchronization	-	0~20h	U8	RO	NO
	01h	Number of sub-objects	-	0~65535	U16	RW	NO
	02h	Sync mode	ns	0~4294967295	U32	RW	NO
	03h	Cycle time	ns	0~4294967295	U32	RW	NO
	04h	Shift time	-	0~65535	U16	RO	NO
	05h	Sync modes supported	ns	0~4294967295	U32	RO	NO
	06h	Minimum cycle time	ns	0~4294967295	U32	RO	NO
	08h	Calc and copy time	ns	0~65535	U16	RO	NO
1C33h	09h	Command (cannot support)	ns	0~4294967295	U32	RO	NO
	0Ah	Delay time (cannot support)	-	0~4294967295	U32	RO	NO
	0Bh	Sync0 cycle time When DC SYNC0 (1C32h-01h=02h), ESC register 09A0h is set. Except DC SYNC0, set to 0	-	0~65535	U16	RO	NO
	0Ch	Cycle time too small (cannot support)	-	0~65535	U16	RO	NO
	0Dh	SM-event missed (cannot support)	-	0~65535	U16	RO	NO
	0Eh	Shift time too short (cannot support)	-	0~65535	U16	RW	NO
	20h	RxPDO toggle failed (cannot support)	-	0~1	BOOL	RO	NO

Appendix 2.2 Servo parameter area

Index	Sub-index	Name	
2000h	00h	P0-00	
2001h	00h	P0-01	
2002h	00h	P0-02	
2003h	00h	P0-03	
205Fh	00h	P0-95	
2100h	00h	P1-00	
2101h	00h	P1-01	
2102h	00h	P1-02	
2103h	00h	P1-03	
214Ah	00h	P1-74	
2200h	00h	P2-00	
2201h	00h	P2-01	
2202h	00h	P2-02	
2203h	00h	P2-03	
	•••		
2263h	00h	P2-99	

Index	Sub-index	Name	
2500h	00h	P5-00	
2501h	00h	P5-01	
2502h	00h	P5-02	
2503h	00h	P5-03	
•••	•••	•••	
2547h	00h	P5-71	
2700h	00h	P7-00	
2701h	00h	P7-01	
2702h	00h	P7-02	
2703h	00h	P7-03	
	•••	•••	
2715h	00h	P7-21	
2800h	00h	P8-00	
2801h	00h	P8-01	
2802h	00h	P8-02	
2803h	n 00h P8-0		
	•••		
281Ah	00h	P8-26	

2300h	00h	P3-00	
2301h	00h	P3-01	
2302h	00h	P3-02 P3-03	
2303h	00h		
•••	•••	•••	
232Eh	00h	P3-46	

Appendix 2.3 Driver Profile area(0x6000~0x6FFF)

Error code (603Fh)

Index	Sub	Name	Range	Data type	Accessibility	PDO	Suitable			
	index						mode			
		Error code	0~65535	U16	ro	TxPDO	ALL			
603Fh	00h	Display the main number of alarms that are occurring in the servo drive. (for 3791 and								
		later versions, univers	later versions, universal alarm displays complete error codes)							

Control word (6040h)

Index	Sub	Name	Range	Data type	Accessibility	PDO	Suitable
	index						mode
60.401	0.01	Controlword	0~65535	U16	rw	RxPDO	ALL
6040h 00h Set control commands for servo drivers such as PDS state transitions.							

Bit information of 6040h:

Bit	Nam	e	Note
0	switch on	Servo ready	-
1	enable voltage	Connect the main circuit power supply	-
2	quick stop	Quick stop	The logic is valid under 0. Please note to execute other bit logic and reverse actions
3	enable operation	Servo running	-
4	operation mode specific	Control mode dependency bit	PP: new set-point HM: start homing In other modes: this bit is undefined
5	operation mode specific	Control mode dependency bit	PP: change set immediately In other modes: this bit is undefined
6	operation mode specific	Control mode dependency bit	PP: absolute /elative In other modes: this bit is undefined
7	fault reset	fault reset	-
8	halt	halt	When bit8=1, execute motor deceleration pause through 605Dh (Halt selection code). After pausing, the enable must be turned off to restart the action
9	operation mode specific	Control mode dependency bit	In other modes: this bit is undefined
10~15	Reserved Reserved		-

6040h bit0~3, bit7 information:

Command	bit7	bit3	bit2	bit1	bit0	PDS
	Fault reset	Servo running	Quick stop	Connect main circuit power supply	Servo ready	conversion
Shutdown	0	-	1	1	0	2, 6, 8

Switch on	0	0	1	1	1	3
Switch on + Enable operation	0	1	1	1	1	3+4
Enable operation	0	1	1	1	1	4, 16
Disable voltage	0	-	-	0	-	7, 9, 10, 12
Quick stop	0	-	0	1	-	7, 10, 11
Disable operation	0	0	1	1	1	5
Fault reset	0→1	-	-	-	-	13

Status word (6041h)

The commands for PDS state migration and control of the slave station are set through 6040h (control word).

Index	Sub	Name	Range	Data type	Accessibility	PDO	Suitable
	index						mode
6041h	00h	Statusword	0~65535	U16	ro	TxPDO	ALL

6041h bit information:

Bit	N	ame	Note		
0	ready to switch on	Main circuit power off status	-		
1	switched on	Servo ready status	-		
2	operation enabled	Servo running	-		
3	fault	Fault	-		
4	voltage enabled	Main circuit power on status	1: Indicates that the power supply voltage is printed onto the PDS		
5	quick stop	quick stop	0: Indicates that PDS receives a quick stop request. The bit logic of quick stop is valid at 0. Please note to execute other bit logic and reverse actions		
6	switch on disabled	Servo cannot run	-		
7	warning warning warned, t		1: Indicates that a warning is occurring. When warned, the PDS status remains unchanged and the motor continues to operate.		
8	reserved	reserved	_		
9	remote	Remote control	0: Indicates that 6040h is in an unprocessed state.1: Indicates that 6040h is in a manageable state.The ESM state changes to 1 when transitioning above PreOP.		
10	operation mode specific	Control mode dependency bit	PP, PV, TQ, HM: target reached In other modes: this bit is undefined		
11	internal limit active	The internal position of the software exceeds the limit	The main reason for internal limitations is that the bit11 of 6041h becomes 1 when it occurs		
12	operation mode specific	Control mode dependency bit	PP: set-point acknowledge PV: speed HM: homing attained CSP, CSV, CST: drive follows command value TQ: this bit no definition		
13	operation mode specific	Control mode dependency bit	CSP: following error In other modes: this bit is undefined		
14~15	reserved	reserved	Value fixed to 0		

6041h bit6~5, bit3~0 information:

6041h	PDS status			
xxxx xxxx x0xx 0000 b	Not ready to switch on	Incomplete initialization status		
xxxx xxxx x1xx 0000 b	Switch on disabled	Initialization completion status		
xxxx xxxx x01x 0001 b	Ready to switch on	Initialization completion status		
xxxx xxxx x01x 0011 b	Switched on	Servo enable off/servo ready		
xxxx xxxx x01x 0111 b	Operation enabled	Servo enable on		
xxxx xxxx x00x 0111 b	Quick stop active	Stop immediately		
xxxx xxxx x0xx 1111 b	Fault reaction active	Abnormal (alarm) judgment		
xxxx xxxx x0xx 1000 b	Fault	Abnormal (alarm) state		

Quick stop mode (605Ah)

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
605Ah	00h	Quick stop option code	-	0~7	I16	rw	NO	ALL

605Ah information:

Control mode	Value	Effective deceleration	PDS status after stop
	0	Free stop on servo side	
	1	6084h	Switch on disabled
pp, csp, csv, pv mode	2	6085h	Switch on disabled
	3	60C6h	
	5	6084h	
	6	6085h	Quick stop active
	7	60C6h	
	0	Free stop on servo side	
	1	609Ah	Switch on disabled
	2	6085h	Switch on disabled
Hm mode	3	60C6h	
	5	609Ah	
	6	6085h	Quick stop active
	7	60C6h	
	0	Free stop on servo side	
	1, 2	6087h	Switch on disabled
cst, tq mode	3	Torque set to 0	
	5, 6	6087h	0:1.4
	7	Torque set to 0	Quick stop active

Example of deceleration stop action based on Quick stop command:

A: If 6040h: bit2 (Controlword: quick stop) changes from 1 to 0, start decelerating stop.

The PDS status during deceleration changes to Quick stop active.

B: The motor stops when the actual speed is detected to be below 10r/min.

The PDS status after stopping is Switch on disabled or changed to Quick stop active.

Stop mode selection (605Bh)

Index	Sub index	Name	Unit	Range	Data type	Accessibil ity	PDO	Suitable mode
605Bh	00h	Shutdown option code	-	0~1	I8	rw	RxPDO	ALL

605Bh information:

(1) When PDS command \[Shutdown \] is receiving

Control mode	Value	Effective deceleration	PDS status after stop
nn agn agy ny mada	0	Free stop on servo side	
pp, csp, csv, pv mode	1	6084h	
Hm mode	0	Free stop on servo side	Doody to assistable an
Hill mode	1	609Ah	Ready to switch on
ast ta made	0	Free stop on servo side	
cst, tq mode	1	6087h	

(2) When PDS command \[\text{Disable voltage} \] is receiving

Control mode	value	Effective deceleration	PDS status after stop
nn agn agy ny mada	0	Free stop on servo side	
pp, csp, csv, pv mode	1	6084h	
Um mada	0	Free stop on servo side	Switch on disabled
Hm mode	1	609Ah	Switch on disabled
act ta mada	0	Free stop on servo side	
cst, tq mode	1	6087h	

An example of slowing down and stop based on the Shutdown command:

A: If you receive the PDS command "Shutdown" to start deceleration and stop.

The PDS status during deceleration remains Operation enabled.

B: The motor stops when the actual speed is detected to be below 10r/min.

The PDS status after stopping is Ready to switch on.

Servo OFF shutdown mode selection (605Ch)

Index	Sub	Name	Unit	Range	Data type	Accessibility	PDO	Suitable
	index							mode
605Ch	00h	Servo OFF shutdown	1	0~1	I8	rw	RxPDO	ALL
		mode						

605Ch value information:

Current control mode	Value	Effective deceleration	PDS status after shutdown
nn agn agy ny mada	0	Servo side free stop	
pp, csp, csv, pv mode	1	6084h	
Hm mode	0	Servo side free stop	Switched on
Hill mode	1	609Ah	Switched on
agt ta made	0	Servo side free stop	
cst, tq mode	1	6087h	

An example of slowing down and stop based on the Disable operation command.

A: If you receive the PDS command "Disable operation", start deceleration and stop.

The PDS status during deceleration remains Operation enabled.

B: Motor stops when the actual speed is below 10 r/min.

The PDS status bit after stop is Switched on.

Pause shutdown mode selection (605Dh)

-	duse shadown mode selection (003Dh)											
	Index	Sub	Name	Unit	Range	Data type	Accessibility	PDO	Suitable			
		index							mode			
	605Dh	00h	Pause shutdown mode selection	-	1~3	I16	rw	NO	ALL			

605Dh value information:

VOLUME INCOME.									
Current control mode	Value	Effective deceleration	PDS status after shutdown						
	1	6084h							
pp, csp, csv, pv mode	2	6085h							
	3	6072h, 60C6h							
	1	609Ah	Operation analysed						
Hm mode	2	6085h	Operation enabled						
	3	6072h, 60C6h							
act to made	1, 2	6087h							
cst, tq mode	3	Torque set to 0							

Examples of deceleration and stop based on the Halt function

A: If 6040h: bit8 (Controlword: halt) changes from 0 to 1, start decelerating and stop. The PDS status during deceleration remains Operation enabled.

B: the motor stops when the actual speed is below 10 r/min. After stopping, the PDS status remains in Operation enabled.

Alarm shutdown mode selection (605Eh)

Index	Sub	Name	Unit	Range	Data type	Accessibility	PDO	Suitable
	index							mode
605Eh	00h	Fault reaction option code	-	0~2	I16	rw	NO	ALL

605Eh value information:

(1) When EtherCAT communication association abnormal alarm occurs (E-800~E-899):

Current control mode	Value	Effective deceleration	PDS status after shutdown
	0	Servo side free stop	
pp, csp, csv, pv mode	1	6084h	
	2	6085h	
	0	Servo side free stop	Fault
Hm mode	1	609Ah	rault
	2	6085h	
ast ta mada	0	Servo side free stop	
cst, tq mode	1, 2	6087h	

(2) When EtherCAT communication is not associated with abnormal alarms (not E-800~E-899):

Current control mode	Value	Effective deceleration	PDS status after shutdown
pp, csp, csv, pv hm, cst, tq	0, 2, 3	Servo side free stop	Fault

Examples of deceleration and stop based on alarms.

- A: If an alarm occurs, start decelerating and stop. The PDS status during deceleration is Fault reaction active.
- B: the motor stops when the actual speed is below 10 r/min. The PDS status after stopping is Fault.

Control mode setting (6060h)

The control mode is set through 6060h.

Index	Sub index	Name	Range	Data type	Accessibility	PDO	Suitable mode
6060h	00h	Mode of operation	-128~127	I8	rw	RxPDO	All

6060h bit information:

bit	Definition	abbr	correspond
-128~ -1	-	-	-
0	No mode changed/No mode assigned	-	-
1	Profile position mode	pp	YES
3	Profile velocity mode	pv	YES
4	Torque profile mode	tq	YES
6	Homing mode	hm	YES
8	Cyclic synchronous position mode	csp	YES
9	Cyclic synchronous velocity mode	csv	YES
10	Cyclic synchronous torque mode	cst	YES
11~127	-	-	-

Since 6060h is the default = (no mode change/no mode assigned), be sure to set the control mode value used after power input. When the set value for 6060h is 0 and the set value for 6061h is 0, an E-881(Control Mode Set Exception Protection) occurs if the PDS state migrates to Operation enabled.

After the initial state is converted from 0 to the supported control mode (pp, pv, tq, hm, csp, csv, cst), set 6060h to 0 again, the previous control mode will be maintained as "No mode changed", and the switch of control mode cannot be performed.

Control mode display (6061h)

The confirmation of the internal control mode of the servo drive is performed according to 6061h. After setting 6060h, please confirm whether it is feasible to set this object action by detection.

Index	Sub	Name	Range	Data type	Accessibility	PDO	Suitable
	index						mode
6061h	00h	Mode of operation display	-128~127	I8	ro	TxPDO	All

6061h bit information:

bit	Definition	abbr	correspond
-128~ -1	-	-	-
0	No mode changed/No mode assigned	-	-
1	Profile position mode	pp	YES
3	Profile velocity mode	pv	YES

bit	Definition	abbr	correspond
4	Torque profile mode	tq	YES
6	Homing mode	hm	YES
8	Cyclic synchronous position mode	csp	YES
9	Cyclic synchronous velocity mode	csv	YES
10	Cyclic synchronous torque mode	cst	YES
11~127	-	-	_

Position command (6062h)

1 Oblition	Commi	4 (000211)						
Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Omi		type			mode
			Command	-2147483648~				PP
6062h	00h	Position command	Command	-2147483647 2147483647	I32	ro	TxPDO	CSP
			unıt	214/48304/				HM

Internal actual position feedback (6063h)

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
6063h	00h	Internal actual position feedback	Command unit	-2147483648~ 2147483647	I32	ro	TxPDO	ALL

Position feedback (6064h)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Onit		type			mode
6064h	00h	Position feedback	Command unit	-2147483648~ 2147483647	I32	ro	TxPDO	ALL

Position deviation too large threshold (6065h)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable			
	index		Omi		type			mode			
(0(51	0.01	Position deviation too large threshold	Command unit	0~ 4294967295	U32	rw	RxPDO	PP CSP			
6065h	00h		When the difference between the position instruction 6062h and the position feedback 6064h exceeds 6065h and the time reaches 6066h, the bit 13 of 6041h will be set to 1.								

Excessive position deviation timeout (6066h)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Ollit		type			mode
60661	0.01-	Excessive position deviation timeout	1ms	0~65535	U16	rw	RxPDO	PP CSP
6066h	00h	When the difference betw 6064h exceeds 6065h and		1		_		

Position reach threshold (6067h)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable		
	index				type			mode		
6067h	001	Position reach threshold	Command unit	0~4294967295	U32	rw	RxPDO	PP		
000711	00h		feedback 60	When the difference between the position instruction 6062h and the position feedback 6064h is within the set range of 6067h, and the time reaches 6068 the bit 10 of 6041h will be set to 1.						

Position command reached threshold time (6068h)

1 03111011	Command	a reactica un estibla uni	1000011)					
Index	Sub	Name	Unit	Range	Data	Access	PDO	Suitable
	index		Oiit		type	ibility		mode
6068h	00h	Position command reached threshold	1ms	0~65535	U16	rw	RxPDO	PP

	time						
	When the difference b	etween the po	osition instruction	6062h an	d the pos	ition feedb	ack
	6064h is within the se	t range of 606	57h, and the time	reaches 60	68h, the	bit 10 of 60	041h will
	be set to 1.	C					

Speed command (606Bh)

Speed	Ommand	(000Bii)						
Index	Sub	Name		Range	Data	Acce	PDO	Suitable
	index		Unit		type	ssibili		mode
						ty		
606Bh	00h	Speed command	Command unit /s	-2147483648~	I32	RO	TxPDO	PV
				2147483647				CSV

Speed feedback (606Ch)

	Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
e	606Ch	00h	Speed feedback	Command unit /s	-2147483648~ 2147483647	I32	ro	TxPDO	ALL

Speed reached threshold (606Dh)

Index	Sub index	Name	Unit	Range	Data type	Acces sibilit	PDO	Suitable mode
		Speed reached threshold	command unit	0~4294967295	U32	rw	RxPDO	PV
606Dh	00h	When the difference within the set range of to 1.		L .				

Speed reached threshold time (606Eh)

Index	Sub index	Name	Unit	Range	Data type	Accessi bility	PDO	Suitable mode
	macx	Speed reached threshold time	1ms	0~65535	U16	rw	RxPDO	PV
606Eh	00h	When the difference bet within the set range of 6 1.		1				

Speed threshold (606Fh)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable		
	index				type			mode		
606Fh	00h	Velocity threshold	Command unit	0~4294967295	U32	rw	RxPDO	PV		
OOOFII	OON	When the value of speed feedback 606Ch exceeds the set value of 606Fh and the time reaches 6070h, the threshold value of bit 12 for 6041h is set to 0. If the speed is below the set value of this parameter, the bit12 of 6041h becomes 1.								

Speed threshold time (6070h)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index				type			mode
		Velocity threshold time	1ms	0~65535	U16	rw	RxPDO	PV
6070h	00h	When 606Ch exceeds the	set value	e of 606Fh,	set the ti	ime for bit12 of	6041h to b	pecome
		0.						

Target torque (6071h)

Target	01940 (00	, , , , , , , , , , , , , , , , , , ,						
Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Omi		type			mode
6071h	00h	Target torque	0.1%	-32768~32767	I16	rw	RxPDO	TQ

Max torque (6072h)

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
6072h	00h	Max torque	0.1%	0~65535	U16	rw	RxPDO	ALL

Max current (6073h)

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
6073h	00h	Max current	0.1%	0~65535	U16	ro	NO	ALL

Torque command (6074h)

		. ()						
Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Omi		type			mode
6074h	00h	Torque command	0.1%	-32768~32767	I16	ro	TxPDO	ALL

Motor rated torque (6076h)

 ICTOI IC	itou torqu	10 (00 / 011)						
Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Oilit		type			mode
6076h	00h	Motor rated torque	Mn·m	0 ~ 4294967295	U32	RO	TxPDO	ALL

Torque feedback (6077h)

Inc	lex	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
		index		Omi		type			mode
607	77h	00h	Torque feedback	0.1%	-32768~32767	I16	ro	TxPDO	ALL

Current feedback (6078h)

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
6078h	00h	Current feedback	0.10%	-32768~32767	I16	RO	TxPDO	ALL

Bus voltage (6079h)

2000 . 0.	100.85	, 11)						
Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
6079h	00h	DC link circuit voltage	mV	0~4294967295	U32	RO	TxPDO	ALL

Target position (607Ah)

Turget pos	101011 (00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Index	Sub	Name		Range	Data	Acce	PDO	Suitable
	index		Unit		type	ssibi		mode
						lity		
607Ah	00h	Target position	Command	-2147483648~ 2147483647	I32	rw	RxPDO	PP CSP
			unit	Z14/40304/				HM

Position range limit (607Bh)

1 0511101	i range i	(00/Dil)						
Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Omt		type			mode
(07DL	01h	Min position range limit	command unit	-2147483648~ 2147483647	I32	rw	RxPDO	ALL
607Bh	02h	Max position range limit	command unit	-2147483648~ 2147483647	I32	rw	RxPDO	ALL

This parameter modification has no effect.

Home offset (607Ch)

1101110 0	1500 (007)	211)						
Index	Sub index	Name	Unit	Range	Data type	Acce ssibil itv	PDO	Suitable mode
607Ch	00h	Home Offset	command	-2147483648~ 2147483647	I32	rw	RxPDO	NO

Soft limit (607Dh)

Index	Sub index	Name	Unit	Range	Data type	Acces sibilit y	PDO	Suitable mode
607Dl	01h	Min position limit	command unit	-2147483648~ 2147483647	I32	rw	RxPDO	NO
607Dh	02h	Max position limit	command unit	-2147483648~ 2147483647	I32	rw	RxPDO	NO

Command polarity (607Eh)

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
607Eh	00h	Command Polarity	-	0~255	U8	rw	NO	ALL

607Eh bit information

bit	Name	value	note	note
0-4	-	0	-	Reserved, please set to 0
5	Torque	0	Symbol without inversion	0: No inversion of symbols
3	polarity	1	Symbol has inversion	1: The symbol has inversion
6	Speed	0	Symbol without inversion	0: No inversion of symbols
6	polarity	1	Symbol has inversion	1: The symbol has inversion
7	Position	0	Symbol without inversion	0: No inversion of symbols
_ /	polarity	1 Symbol has inversion		1: The symbol has inversion

The position, speed, and torque polarity must be exactly the same, that is, bit7-5 must all be set to 0 or bit7-5 must all be set to 1.

Max profile speed (607Fh)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Omi		type			mode
		May mustile						PP
		Max profile velocity	command unit/s	0~4294967295	U32	rw	RxPDO	PV
607Fh	00h	velocity	unit/S					HM
	Speed limit values in pp, hm, and pv mode.							
The maximum value is limited by 6080h through internal processing.								

Max motor speed (6080h)

Index	Sub	Name	I Ii.	Range	Data	Accessibility	PDO	Suitable
	index		Unit	_	type	-		mode
		Max motor speed	r/min	0~4294967295	U32	rw	RxPDO	PV TQ CSV CST
6080h	00h	The maximum internal process	ipply inpu value is li sing.	of the motor. t, the maximum sp mited by the maximum sp eed is limited by th	mum spe	ed read from the	e motor bas	sed on

Profile speed (6081h)

Index	Sub index	Name	Unit	Range	Data type	Acces sibility	PDO	Suitable mode
6081h	00h	Profile velocity	command unit/s	0~4294967295	U32	rw	RxPDO	PP

Profile acceleration (6083h)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable		
	index		Omi		type			mode		
60021	001-	Profile acceleration	command unit/s ²	0~4294967295	U32	rw	RxPDO	PP PV		
6083h	00h	Set profile acceleration. When set to 0, internal processing is processed as 1.								
		when set to 0, interr	iai processing	is processed as	1.					

Profile deceleration (6084h)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Omi		type			mode
								PP
		Profile						PV
		deceleration	command unit/s ²	0~4294967295	U32	2 rw	RxPDO	HM
6084h	00h	deceleration	unit/s²					CSP
								CSV
		Set the profile decel	eration.					
		When set to 0, interr	nal processing	is processed as	1.			

Fast stop deceleration (6085h)

Index	Sub	Name		Range	Data	Acces	PDO	Suitable
	index		Unit		type	sibilit		mode
						у		
								PP
		Foot ston						PV
6085h	00h	Fast stop deceleration	command unit/s ²	0~4294967295	U32	rw	RxPDO	HM
		deceleration	unit/s²					CSP
								CSV

Motor rated current (6075h)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Omi		type			mode
								PP
								PV
6075h	00h	Motor rated current	1mA	0~4294967295	U32	RO	TxPDO	HM
								CSP
								CSV

Position trajectory planning type (6086h)

Index	Sub index	Name	Unit	Range	Data type	Accessi bility	PDO	Suitable mode
6086h	00h	Position trajectory planning type	-	-32768~32767	I16	rw	RxPDO	HM

This parameter 0: Step type; 1: Slope type.

This parameter is only applicable to HM mode. In PP and PV modes, slope types are directly used within trajectory planning.

In CSP and CSV modes, this parameter is not required and trajectory planning is completed at the main station.

Torque slope (6087h)

Index	Sub index	Name	Unit	Range	Data type	Access ibility	PDO	Suitable mode
6087h	00h	Torque slope	0.1%	0~4294967295	U32	rw	RxPDO	TQ CST

Index	Sub index	Name	Unit	Range	Data type	Access ibility	PDO	Suitable mode
		Set the parameter value In CST mode, it is only	_					

Torque planning type (6088h)

Index	Sub index	Name	Unit	Range	Data type	Accessi bility	PDO	Suitable mode
6088h	00h	Torque planning type	-	0~65535	I16	rw	RxPDO	TQ

This parameter 0: Step type; 1: Slope type.

In TQ mode, the slope type directly used for torque planning, modifying this parameter has no effect.

Electronic gear ratio (6091h)

Index	Sub index	Name	Unit	Range	Data type	Access ibility	PDO	Suitable mode
60011	01h	Motor revolutions	Turns (motor)	1~4294967295	U32	rw	NO	ALL
6091h	02h	Shaft revolutions	Turns (shaft)	1~4294967295	U32	rw	NO	ALL

This object defines the content related to the motor turns and the shaft turns after the gearbox output. Gear ratio = 6091h-01h/6091h-02h

Encoder division ratio (6092h)

Index	Sub index	Name	Unit	Range	Data type	Accessi bility	PDO	Suitable mode
	01h	Feed	command unit	1~4294967295	U32	rw	NO	ALL
6092h		Set feed quantity						
009211	02h	Shaft revolutions	Turns (shaft)	1~4294967295	U32	rw	NO	ALL
		Set shaft turns						

This object represents the amount of action for each rotation of the shaft after the gearbox output. Feed constant =6092h-01h/6092h-02h

Homing mode (6098h)

 	(00)	, , , , , , , , , , , , , , , , , , , ,					
Index	Sub	Name	Range	Data type	Accessibility	PDO	Suitable
	index						mode
6098h	00h	Homing method	-128~127	I8	rw	RxPDO	All

6098h value information:

<u>5098n y</u>	value information:
value	definition
-2	Searching for reverse limits
-1	Searching for positive limits
0	Not specify the homing method
1	Reverse homing, the deceleration point is the reverse limit switch, and the origin is the motor Z signal. Before encountering the Z signal, the descending edge of the reverse limit must be encountered first
2	Forward homing, deceleration point is the forward limit switch, origin is the motor Z signal, and the falling edge of the forward limit must be encountered before encountering the Z signal
3	Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the same side of the origin switch
4	Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch
5	Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the same side of the origin switch
6	Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch

encountering the Z signal, it is necessary to first encounter the falling edge on the same side of the origin switch Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, you must first encounter the rising edge on the other side of the origin switch Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the other side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the same side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch. Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal on the other side of the origin switch. Before encountering the Z signal, the rising edge on the other side of the origin switch must be encountered first Reverse homing, deceleration point is the origin switch, and the origin is the Z signal of the motor the other side of the origin switch must be encountered first No meaning No meaning Homing action is the same as 2, but the origin is at the reverse limit position Homing action is the same as 3, but the origin is at the origin switch Homing action is the same as 3, but the origin is at the origin switch Homing action is the same as 6, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same a	value	definition
Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, you must first encounter the rising edge on the other side of the origin switch Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the other side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the same side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch for side of the origin switch. Before encountering the Z signal, the rising edge on the other side of the origin switch. Before encountering the Z signal, the rising edge on the other side of the origin switch must be encountered first Reverse homing, deceleration point is the origin switch, and the origin is the Z signal of the motor the origin switch must be encountered first Reverse homing, deceleration point is the origin switch, and the origin is the Z signal of the motor the origin switch must be encountered first No meaning Homing action is the same as 1, but the origin is at the reverse limit position Homing action is the same as 3, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 1, but the origi	7	Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the same side of the
encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, you must first encounter the rising edge on the other side of the origin switch Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the other side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the same side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch must be encountered first Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal on the other side of the origin switch. Before encountering the Z signal, the rising edge on the other side of the origin switch must be encountered first Reverse homing, deceleration point is the origin switch, and the origin is the Z signal of the other side of the origin switch. Before encountering the Z signal, the falling edge on the other side of the origin switch must be encountered first No meaning Homing action is the same as 1, but the origin is at the origin is the Z signal of the motor the other side of the origin is the same as 2, but the origin is at the origin switch Homing action is the same as 3, but the origin is at the origin switch Homing action is the same as 6, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at		
encountering the Z signal, you must first encounter the rising edge on the other side of the origin switch Positive homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the other side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the same side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal on the other side of the origins switch. Before encountering the Z signal, the rising edge on the other side of the origin switch Before encountering the Z signal, the rising edge on the other side of the origin switch before encountering the Z signal, the falling edge on the other side of the origin switch must be encountered first Reverse homing, deceleration point is the origin switch, and the origin is the Z signal of the motor of the origin switch must be encountered first No meaning No meaning Homing action is the same as 1, but the origin is at the reverse limit position Homing action is the same as 2, but the origin is at the origin switch Homing action is the same as 4, but the origin is at the origin switch Homing action is the same as 5, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 9, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action	8	encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the
encountering the Z signal, it is necessary to first encounter the falling edge on the other side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the falling edge on the same side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal on the other side of the origin switch. Before encountering the Z signal, the rising edge on the other side of the origin switch must be encountered first Reverse homing, deceleration point is the origin switch, and the origin is the Z signal of the motor of the other side of the origin switch. Before encountering the Z signal, the falling edge on the other side of the origin switch must be encountered first No meaning No meaning Homing action is the same as 1, but the origin is at the reverse limit position Homing action is the same as 2, but the origin is at the origin switch Homing action is the same as 3, but the origin is at the origin switch Homing action is the same as 5, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homi	9	
encountering the Z signal, it is necessary to first encounter the falling edge on the same side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal. Before encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal on the other side of the origin switch. Before encountering the Z signal, the rising edge on the other side of the origin switch must be encountered first Reverse homing, deceleration point is the origin switch, and the origin is the Z signal of the motor of the other side of the origin switch. Before encountering the Z signal, the falling edge on the other side of the origin switch must be encountered first No meaning No meaning Homing action is the same as 1, but the origin is at the reverse limit position Homing action is the same as 2, but the origin is at the forward limit position Homing action is the same as 3, but the origin is at the origin switch Homing action is the same as 4, but the origin is at the origin switch Homing action is the same as 5, but the origin is at the origin switch Homing action is the same as 6, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning Reverse homing, with the origin at the Z-phase signal of the	10	
encountering the Z signal, it is necessary to first encounter the rising edge on the same side of the origin switch Reverse homing, deceleration point is the origin switch, and the origin is the motor Z signal on the other side of the origin switch. Before encountering the Z signal, the rising edge on the other side of the origin switch must be encountered first Reverse homing, deceleration point is the origin switch, and the origin is the Z signal of the motor of the other side of the origin switch. Before encountering the Z signal, the falling edge on the other side of the origin switch must be encountered first No meaning 15 No meaning 16 No meaning 17 Homing action is the same as 1, but the origin is at the reverse limit position 18 Homing action is the same as 3, but the origin is at the origin switch 19 Homing action is the same as 4, but the origin is at the origin switch 20 Homing action is the same as 4, but the origin is at the origin switch 21 Homing action is the same as 5, but the origin is at the origin switch 22 Homing action is the same as 6, but the origin is at the origin switch 23 Homing action is the same as 7, but the origin is at the origin switch 24 Homing action is the same as 8, but the origin is at the origin switch 25 Homing action is the same as 10, but the origin is at the origin switch 26 Homing action is the same as 10, but the origin is at the origin switch 27 Homing action is the same as 10, but the origin is at the origin switch 28 Homing action is the same as 12, but the origin is at the origin switch 29 Homing action is the same as 12, but the origin is at the origin switch 30 Homing action is the same as 14, but the origin is at the origin switch 31 No meaning 32 No meaning 33 Reverse homing, with the origin at the Z-phase signal of the motor 34 Forward homing, with the origin at the Z-phase signal of the motor	11	
other side of the origin switch. Before encountering the Z signal, the rising edge on the other side of the origin switch must be encountered first Reverse homing, deceleration point is the origin switch, and the origin is the Z signal of the motor of the other side of the origin switch. Before encountering the Z signal, the falling edge on the other side of the origin switch must be encountered first No meaning No meaning Homing action is the same as 1, but the origin is at the reverse limit position Homing action is the same as 2, but the origin is at the origin switch Homing action is the same as 3, but the origin is at the origin switch Homing action is the same as 4, but the origin is at the origin switch Homing action is the same as 5, but the origin is at the origin switch Homing action is the same as 6, but the origin is at the origin switch Homing action is the same as 7, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 9, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch No meaning No meaning No meaning No meaning Reverse homing, with the origin at the Z-phase signal of the motor Take the current position as the origin at the Z-phase signal of the motor	12	
the other side of the origin switch. Before encountering the Z signal, the falling edge on the other side of the origin switch must be encountered first No meaning No meaning Homing action is the same as 1, but the origin is at the reverse limit position Homing action is the same as 2, but the origin is at the forward limit position Homing action is the same as 3, but the origin is at the origin switch Homing action is the same as 4, but the origin is at the origin switch Homing action is the same as 5, but the origin is at the origin switch Homing action is the same as 6, but the origin is at the origin switch Homing action is the same as 7, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 9, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning No meaning Reverse homing, with the origin at the Z-phase signal of the motor Take the current position as the origin	13	other side of the origin switch. Before encountering the Z signal, the rising edge on the other side of
15 No meaning 16 No meaning 17 Homing action is the same as 1, but the origin is at the reverse limit position 18 Homing action is the same as 2, but the origin is at the forward limit position 19 Homing action is the same as 3, but the origin is at the origin switch 20 Homing action is the same as 4, but the origin is at the origin switch 21 Homing action is the same as 5, but the origin is at the origin switch 22 Homing action is the same as 6, but the origin is at the origin switch 23 Homing action is the same as 7, but the origin is at the origin switch 24 Homing action is the same as 8, but the origin is at the origin switch 25 Homing action is the same as 9, but the origin is at the origin switch 26 Homing action is the same as 10, but the origin is at the origin switch 27 Homing action is the same as 11, but the origin is at the origin switch 28 Homing action is the same as 12, but the origin is at the origin switch 29 Homing action is the same as 13, but the origin is at the origin switch 30 Homing action is the same as 14, but the origin is at the origin switch 31 No meaning 32 No meaning 33 Reverse homing, with the origin at the Z-phase signal of the motor 34 Forward homing, with the origin at the Z-phase signal of the motor 35 Take the current position as the origin	14	
Homing action is the same as 1, but the origin is at the reverse limit position Homing action is the same as 2, but the origin is at the forward limit position Homing action is the same as 3, but the origin is at the origin switch Homing action is the same as 4, but the origin is at the origin switch Homing action is the same as 5, but the origin is at the origin switch Homing action is the same as 6, but the origin is at the origin switch Homing action is the same as 7, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 9, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch No meaning No meaning Reverse homing, with the origin at the Z-phase signal of the motor Take the current position as the origin	15	
Homing action is the same as 2, but the origin is at the forward limit position Homing action is the same as 3, but the origin is at the origin switch Homing action is the same as 4, but the origin is at the origin switch Homing action is the same as 5, but the origin is at the origin switch Homing action is the same as 6, but the origin is at the origin switch Homing action is the same as 7, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 9, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning Reverse homing, with the origin at the Z-phase signal of the motor Take the current position as the origin	16	No meaning
Homing action is the same as 3, but the origin is at the origin switch Homing action is the same as 4, but the origin is at the origin switch Homing action is the same as 5, but the origin is at the origin switch Homing action is the same as 6, but the origin is at the origin switch Homing action is the same as 7, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 9, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning Reverse homing, with the origin at the Z-phase signal of the motor Reverse homing, with the origin at the Z-phase signal of the motor Take the current position as the origin		
Homing action is the same as 4, but the origin is at the origin switch Homing action is the same as 5, but the origin is at the origin switch Homing action is the same as 6, but the origin is at the origin switch Homing action is the same as 7, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 9, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning Reverse homing, with the origin at the Z-phase signal of the motor Take the current position as the origin		
Homing action is the same as 5, but the origin is at the origin switch Homing action is the same as 6, but the origin is at the origin switch Homing action is the same as 7, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 9, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning Reverse homing, with the origin at the Z-phase signal of the motor Take the current position as the origin	_	
Homing action is the same as 6, but the origin is at the origin switch Homing action is the same as 7, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 9, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning No meaning Reverse homing, with the origin at the Z-phase signal of the motor Take the current position as the origin		
Homing action is the same as 7, but the origin is at the origin switch Homing action is the same as 8, but the origin is at the origin switch Homing action is the same as 9, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning Reverse homing, with the origin at the Z-phase signal of the motor Take the current position as the origin		
24 Homing action is the same as 8, but the origin is at the origin switch 25 Homing action is the same as 9, but the origin is at the origin switch 26 Homing action is the same as 10, but the origin is at the origin switch 27 Homing action is the same as 11, but the origin is at the origin switch 28 Homing action is the same as 12, but the origin is at the origin switch 29 Homing action is the same as 13, but the origin is at the origin switch 30 Homing action is the same as 14, but the origin is at the origin switch 31 No meaning 32 No meaning 33 Reverse homing, with the origin at the Z-phase signal of the motor 34 Forward homing, with the origin at the Z-phase signal of the motor 35 Take the current position as the origin		
Homing action is the same as 9, but the origin is at the origin switch Homing action is the same as 10, but the origin is at the origin switch Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning Reverse homing, with the origin at the Z-phase signal of the motor Forward homing, with the origin at the Z-phase signal of the motor Take the current position as the origin		
26 Homing action is the same as 10, but the origin is at the origin switch 27 Homing action is the same as 11, but the origin is at the origin switch 28 Homing action is the same as 12, but the origin is at the origin switch 29 Homing action is the same as 13, but the origin is at the origin switch 30 Homing action is the same as 14, but the origin is at the origin switch 31 No meaning 32 No meaning 33 Reverse homing, with the origin at the Z-phase signal of the motor 34 Forward homing, with the origin at the Z-phase signal of the motor 35 Take the current position as the origin		
Homing action is the same as 11, but the origin is at the origin switch Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning No meaning Reverse homing, with the origin at the Z-phase signal of the motor Forward homing, with the origin at the Z-phase signal of the motor Take the current position as the origin		
Homing action is the same as 12, but the origin is at the origin switch Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning No meaning Reverse homing, with the origin at the Z-phase signal of the motor Forward homing, with the origin at the Z-phase signal of the motor Take the current position as the origin	-	
Homing action is the same as 13, but the origin is at the origin switch Homing action is the same as 14, but the origin is at the origin switch No meaning No meaning Reverse homing, with the origin at the Z-phase signal of the motor Forward homing, with the origin at the Z-phase signal of the motor Take the current position as the origin		
30 Homing action is the same as 14, but the origin is at the origin switch 31 No meaning 32 No meaning 33 Reverse homing, with the origin at the Z-phase signal of the motor 34 Forward homing, with the origin at the Z-phase signal of the motor 35 Take the current position as the origin	-	
31 No meaning 32 No meaning 33 Reverse homing, with the origin at the Z-phase signal of the motor 34 Forward homing, with the origin at the Z-phase signal of the motor 35 Take the current position as the origin		
32 No meaning 33 Reverse homing, with the origin at the Z-phase signal of the motor 34 Forward homing, with the origin at the Z-phase signal of the motor 35 Take the current position as the origin		
33 Reverse homing, with the origin at the Z-phase signal of the motor 34 Forward homing, with the origin at the Z-phase signal of the motor 35 Take the current position as the origin		
34 Forward homing, with the origin at the Z-phase signal of the motor 35 Take the current position as the origin		
1 2		
	35	Take the current position as the origin
Take the current position as the origin	37	Take the current position as the origin

Homing speed (6099h)

Index	Sub	Name		Range	Data	Acce	PDO	Suitable
	index		Unit	_	type	ssibili		mode
						ty		
	01h	Speed during search for deceleration point	command unit/s	0~4294967295	U32	rw	NO	НМ
6099h		Speed during search for zero	command unit/s	0~4294967295	U32	rw	NO	НМ
		If the edge of the Switch	n signal is use	ed as the origin de	tection	position	, please se	t a value
		as small as possible to re	educe detecti	on error.				

The speeds of 6099-01h and 6099-02h are limited by the minimum values of 6080h and 607Fh.

Homing acceleration (609Ah)

Index	Sub	Name		Range	Data	Acces	PDO	Suitable
	index		Unit		type	sibilit		mode
						у		
		Homing acceleration	command unit/s ²	0~4294967295	U32	rw	RxPDO	НМ
609Ah	00h	Set the acceleration and At the final stop of each need to use the set value	homing mod	le (when the origi	n positic		ected), the	re is no

Position feedforward (60B0h)

Index	Sub	Name		Range	Data	Acce	PDO	Suitable		
	index		Unit		type	ssibili		mode		
						ty				
		Position feedforward	command unit	-2147483648~ 2147483647	I32	rw	RxPDO	ALL		
60B0h	00h		This parameter is used for the position loop control of the drive. As the servo underlying							
		algorithm does not Modifying it does		rward control, this p	arameter i	is tempo	orarily not	used.		

Speed feedforward (60B1h)

Index	Sub	Name	T.L	Range	Data	Accessibility	PDO	Suitable
	index		Unit		type	_		mode
60B1h		Velocity feedforward	command unit/s	-2147483648~ 2147483647	I32	rw	RxPDO	ALL
	00h	This parameter is us algorithm does not s Modifying it does no	upport feedforwa	ard control, this p			-	_

Torque feedforward (60B2h)

Index	Sub index	Name	Unit	Range	Data	Access	PDO	Suitable
					type	ibility		mode
		Torque feedforward	0.1%	-2147483648~ 2147483647	I32	rw	RxPDO	ALL
60B2h	00h	algorithm does r		rrent loop control corward control, this effect				, .

Touch Probe function (60B8h)

100011	1100010	metron (oobon)						
Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
60B8h	00h	Touch probe function	-	0~65535	U16	rw	RxPDO	ALL

60B8h bit information:

~	OBOII OI	t IIIIOIIIIu	wion.	
	bit	value	Note	
	Λ	0	Probe 1 not enabled	Probe 1 enabled
	U	1	Probe 1 enabled	Probe i enabled
ſ	1	0	Single triggering	Probe 1 trigger mode selection
	1	1	Continuous triggering	Probe i trigger mode selection
ſ	2	0	External input signal	Probe 1 trigger method
	2	1	Z phase signal (not support)	selection

3	-	-	-
4	0	Rising edge not latched	Probe 1 rising edge selection
4	1	Rising edge latched	Probe I fishig edge selection
5	0	Falling edge not latched	Ducks 1 falling adaptation
3	1	Falling edge latched	Probe 1 falling edge selection
6-7	-	-	-
8	0	Probe 2 not enabled	Probe 2 enabled
0	1	Probe 2 enabled	Probe 2 enabled
9 -	0	Single triggering	Duch a 2 trice and and adjusting
9	1	Continuous triggering	Probe 2 trigger mode selection
10	0	External input signal	Probe 2 trigger method
10	1	Z phase signal (not support)	selection
11	-	-	-
12	0	Rising edge not latched	Duch a 2 vising adaption
12	1	Rising edge latched	Probe 2 rising edge selection
1.2	0	Falling edge not latched	Dual - 2 falling - 414i
13	1	Falling edge latched	Probe 2 falling edge selection
14-15	-	-	-

- At present, Z-phase triggering mode is not supported, only external signals are supported as triggering sources;
- Do not set the rising and falling edges simultaneously under the same probe.

Touch probe status (60B9h)

Index	Sub	Name		Range	Data	Acces	PDO	Suita
	index		Unit		type	sibilit		ble
						у		mode
60B9h	00h	Touch probe status	-	0~65535	U16	ro	TxPDO	ALL

60B9h bit information:

bit	value	Note	
0	0	Probe 1 not executed	Probe 1 execution status
0	1	Probe 1 is executing	Probe 1 execution status
1	0	Probe 1 rising edge latch not completed	Probe 1 rising edge latch state
1	1	Probe 1 rising edge latch completed	Probe I fishig edge latch state
2	0	Probe 1 falling edge latch not completed	Probe 1 falling edge latch state
	1	Probe 1 falling edge latch completed	Probe I faming edge laten state
3-7	-	-	-
8	0	Probe 2 not executed	Probe 2 execution status
0	1	Probe 2 is executing	Flobe 2 execution status
9	0	Probe 2 rising edge latch not completed	Droha 2 riging adaptatabatata
9	1	Probe 2 rising edge latch completed	Probe 2 rising edge latch state
10	0	Probe 2 falling edge latch not completed	Probe 2 falling edge latch state
10	1	Probe 2 falling edge latch completed	Frobe 2 familig edge fatch state
11-15	-	-	-

probe 1 rising edge latch position value (60Bah)

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
60BAh	00h	probe 1 rising edge latch position value	Command unit	-2147483648~ 2147483647	I32	ro	TxPDO	ALL

probe 1 falling edge latch position value (60BBh)

proot r	14111115	eage laten position value (oobbii)						
Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable	
	index		Omt		type			mode	
60BBh	00h	probe 1 falling edge latch	Command	-2147483648~	I32	ro	TxPDO	ALL	
OODDII	UUII	position value	unit	2147483647	132	10		ALL	

probe 2 rising edge latch position value (60BCh)

1		0 1 (**						
Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Oint		type			mode
60BCh	00h	probe 2 rising edge latch	Command	-2147483648~	122	***	TxPDO	ALL
60BCn	UUII	position value	unit	2147483647	132	ro	IXFDO	ALL

probe 2 falling edge latch position value (60BDh)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Cint		type			mode
60BDh	00h	probe 2 falling edge latch position value	Command unit	-2147483648~ 2147483647	I32	ro	TxPDO	ALL

Max acceleration (60C5h)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable				
	index		Oilit		type			mode				
			aammand					PP				
60C5h		Max acceleration	command unit/s ²	0~4294967295	U32	rw	RxPDO	PV				
	00h		uIIIt/S-				W RAI BO					
		Set the maximum accel	Set the maximum acceleration.									
		When set to 0, internal processing is processed as 1.										

Min deceleration (60C6h)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable		
	index		Onit		type			mode		
			aammand					PP		
60C6h 00		Min deceleration	tion command unit/s ²	0~4294967295	U32	rw	RxPDO	PV		
	00h		unit/s²				HM			
		Set the min deceleration	n.							
		When set to 0, internal processing is processed as 1.								

Forward torque limit (60E0h)

		(002011)						
Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Omi		type			mode
		Dogitivo tomano						PP
60E0h	00h	Positive torque limited	0.1%	0~65535	U16	rw	RxPDO	PV
		iimited						HM

Reverse torque limit (60E1h)

Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Omi		type			mode
60E1h	00h	Negtive torque limited	0.1%	0~65535	U16	rw	RxPDO	PP PV HM

Position offset (60F4h)

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
60F4h	00h	Position offset	command unit	-2147483648 ~2147483647	I32	RO	TxPDO	PP CSP HM

Internal command speed (60Fah)

IIICOIIIC	COIIII	and speed (our an)						
Index	Sub	Name	Unit	Range	Data	Accessibility	PDO	Suitable
	index		Omi		type			mode
60FAh	00h	Internal command speed	command unit/s	-2147483648 ~2147483647	I32	RO	TxPDO	ALL

Internal command position (60FCh)

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
		Internal command	command	-2147483648				PP
60FCh	00h	position		_	I32	RO	TxPDO	CSP
		position	unit	2147483647				HM

Digital input (60FDh)

Index	Sub index	Name	Unit	Range	Data type	Acce ssibili tv		Suitable mode
60FDh	00h	Digital inputs	-	0~4294967295	U32	ro	TxPDO	ALL

60FDh bit information

bit	name	value	note
0	negative limit switch	0	No reverse overtravel switch signal detected
0	negative mint switch	1	Reverse overtravel switch signal detected
1	positive limit switch	0	No forward overtravel switch signal detected
1	positive iiiiit switch	1	Forward overtravel switch signal detected
2	home switch	0	No origin switch signal detected
	nome switch	1	Origin switch signal detected
3	EXT1 probe1	0	No input signal detected for probe 1
3	EXTI prober	1	Detected input signal from probe 1
4	EXT1 probe2	0	No input signal detected for probe 2
4	EXTI procez	1	Detected input signal from probe 2
5	Z phase signal output	0	No Z-phase output signal detected
J	Z phase signal output	1	Z-phase output signal detected
6-15	Reserved	-	-
16	Remote input SI1	0	Remote SI1 input signal not detected
10	Kemote input 511	1	Remote SI1 input signal detected
17	Remote input SI2	0	Remote SI2 input signal not detected
1 /		1	Remote SI2 input signal detected
18	Remote input SI3	0	Remote SI3 input signal not detected
10		1	Remote SI3 input signal detected
19-31	Reserved	-	-

Digital output (60FEh)

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
60FEh	-	Digital outputs	-	-	-	-	-	-
	01h	Output of operating the external output signal	-	1	-	-	1	-
OOI LII	02h	Set output operation host machine function of external output signal	-	1	-	-	-	-

60FEh bit information:

index	Bit	name	value	note
	0-15	Reserved	-	-
	16	Remote SO1 output status	0	Remote SO1 output signal not detected
011			1	Remote SO1 output signal detected
01h	17	Remote SO2 output status	0	Remote SO2 output signal not detected
			1	Remote SO2 output signal detected
	18	Remote SO3 output status	0	Remote SO3 output signal not detected

index	Bit	name	value	note
			1	Remote SO3 output signal detected
	0-15	Reserved	-	-
	16	Remote SO1 output enable	0	Turn off remote SO1 output
			1	Turn on remote SO1 output
02h	17	Remote SO2 output enable	0	Turn off remote SO2 output
			1	Turn on remote SO2 output
	18	Remote SO3 output enable	0	Turn off remote SO3 output
			1	Turn on remote SO3 output

Target speed (60FFh)

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
60FFh	00h	Target velocity	command unit/s	-4294967296~4294967295	U32	RW	RxPDO	PV

Supported drive mode (6502h)
This servo driver can confirm the supported control mode based on 6502h.

Index	Sub index	Name	Unit	Range	Data type	Accessibility	PDO	Suitable mode
6502h	00h	Supported drive modes	-	-2147483648~ 2147483647	I32	ro	TxPDO	ALL

6502h bit information:

bit	definition	abbr	correspond	
0	Profile position mode	pp	YES	
2	Profile velocity mode	pv	YES	
3	Torque profile mode	tq	YES	
5	Homing mode	hm	YES	
7	Cyclic synchronous position mode	csp	YES	
8	Cyclic synchronous velocity mode	csv	YES	
9	Cyclic synchronous torque mode	cst	YES	
10~31	-	-	-	

Appendix 3. Glossary of Terms

Term/abbreviation	Full name
EtherCAT	Ethernet for Control Automation Technology
COE	CANopen Over EtherCAT
FMMU	Fieldbus Memory Management Unit
SM	Sync Manager
pp	Profile position
pv	Profile velocity
tq	Torque profile
csp	Cyclic synchronous position mode
hm	Homing mode
csv	Cyclic synchronous velocity mode
cst	Cyclic synchronous torque mode
DC	Distributed Clock
SDO	Service Data Object
PDO	Process Data Object
TxPDO	-
RxPDO	-
ESM	EtherCAT State Machine
ESC	EtherCAT Salve Controller
PHY	Physical layer device that converts data from the Ethernet controller to
FIII	electric or optical signals.
PDI	Process Data Interface or Physical Device Interface
EEPROM	Electrically Erasable Programmable Read Only Memory
ESI	EtherCAT Slave Information, stored in ESI EEPROM(formerly known as SII)

In TQ mode, modifying the slope type directly used for torque planning has no effect.

Address: 816 Jianzhu West Road, Binhu District, Wuxi City, Jiangsu Province

Tel: 0510-85134136 Fax: 0510-85111290

Website: www.xinje.com
Email: sales@xinje.com, Fiona.xinje@163.vip.com